Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958977

ABSTRACT

CARD9, a scaffolding protein, has been implicated in the pathogenesis of metabolic diseases, including obesity and diabetes. We recently reported novel roles for CARD9 in islet ß-cell dysregulation under duress of gluco (HG)- and glucolipotoxic (GLT) stress. CARD9 expression was also increased in ß-cells following exposure to HG and GLT stress. The current study is aimed at understanding the putative roles of histone deacetylation in HG- and GLT-induced expression of CARD9. Using two structurally distinct inhibitors of histone deacetylases (HDACs), namely trichostatin (TSA) and suberoylanilide hydroxamic acid (SAHA), we provide the first evidence to suggest that the increased expression of CARD9 seen under duress of HG and GLT stress is under the regulatory control of histone deacetylation. Interestingly, the expression of protein kinase Cδ (PKCδ), a known upstream regulator of CARD9 activation, is also increased under conditions of metabolic stress. However, it is resistant to TSA and SAHA, suggesting that it is not regulated via histone deacetylation. Based on these data, we propose that targeting the appropriate HDACs, which mediate the expression (and function) of CARD9, might be the next step to further enhance our current understanding of the roles of CARD9 in islet dysfunction under metabolic stress and diabetes.


Subject(s)
Diabetes Mellitus , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/pharmacology , Caspase Activation and Recruitment Domain , Vorinostat , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Stress, Physiological , CARD Signaling Adaptor Proteins/metabolism
2.
Cell Physiol Biochem ; 56(4): 367-381, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35981264

ABSTRACT

BACKGROUND/AIMS: We recently reported increased phosphorylation (at S536) of the p65 subunit of NFκB (Rel A) in pancreatic beta (INS-1 832/13) cells following exposure to hyperglycemic (HG) conditions. We also demonstrated that HG-induced S536 phosphorylation of p65 is downstream to the regulatory effects of CARD9 since deletion of CARD9 expression significantly attenuated HG-induced S536 phosphorylation of p65 in beta cells. The overall objective of the current investigation is to identify putative mechanisms underlying HG-induced phosphorylation of p65 in islet beta cells following exposure to HG conditions. METHODS: INS-1 832/13 cells were incubated in low glucose (LG; 2.5 mM) or high glucose (HG; 20 mM) containing media for 24 hours in the absence or presence of small molecule inhibitors of G protein prenylation and activation. Non-nuclear and nuclear fractions were isolated from INS-1 832/13 cells using a commercially available (NE-PER) kit. Degree of S536 phosphorylation of the p65 subunit was quantified by western blotting and densitometry. RESULTS: HG-induced p65 phosphorylation was significantly attenuated by inhibitors of protein prenylation (e.g., simvastatin and L-788,123). Pharmacological inhibition of Tiam1-Rac1 (e.g., NSC23766) and Vav2-Rac1 (e.g., Ehop-016) signaling pathways exerted minimal effects on HG-induced p65 phosphorylation. However, EHT-1864, a small molecule compound, which binds to Rac1 thereby preventing GDP/GTP exchange, markedly suppressed HG-induced p65 phosphorylation, suggesting that Rac1 activation is requisite for HG-mediated p65 phosphorylation. Lastly, EHT-1864 significantly inhibited nuclear association of STAT3, but not total p65, in INS-1 832/13 cells exposed to HG conditions. CONCLUSION: Activation of Rac1, a step downstream to HG-induced activation of CARD9, might represent a requisite signaling step in the cascade of events leading to HG-induced S536 phosphorylation of p65 and nuclear association of STAT3 in pancreatic beta cells. Data from these investigations further affirm the role(s) of Rac1 as a mediator of metabolic stress- induced dysfunction of the islet beta cell.


Subject(s)
Hyperglycemia , Insulin-Secreting Cells , Glucose/metabolism , Glucose/pharmacology , Humans , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , NF-kappa B/metabolism , Phosphorylation , Transcription Factor RelA/metabolism , rac1 GTP-Binding Protein/metabolism
3.
Mol Cell Endocrinol ; 557: 111754, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35987388

ABSTRACT

The current study examined the roles of Alpha4, a non-canonical subunit of protein phosphatase 2A, in the regulation of acute (insulin secretion) and chronic (cell dysfunction) effects of glucose in pancreatic beta cells. Alpha4 is expressed in human islets, rat islets and INS-1832/13 cells. Incubation of INS-1832/13 cells and rat islets with high glucose (HG) significantly increased the expression of Alpha4. C2-Ceramide, a biologically active sphingolipid, also increased the expression of Alpha4 in INS-1832/13 cells and rat islets. Subcellular distribution studies of Alpha4 in low glucose (LG) and HG exposed INS-1832/13 cells revealed that it is predominantly cytosolic, and its expression is significantly increased in the non-nuclear/cytosolic fractions in cells exposed to HG. siRNA-mediated knockdown of Alpha4 exerted minimal effects on glucose- or KCl-induced insulin secretion. siRNA-mediated deletion of Alpha4 significantly increased p38MAPK and JNK1/2 phosphorylation under LG conditions, comparable to the degree seen under HG conditions. Paradoxically, a significant potentiation of HG-induced p38MAPK and JNK2 phosphorylation was noted following Alpha4 deletion. HG-induced CHOP expression (ER stress marker) and caspase-3 activation were markedly attenuated in cells following Alpha4 knockdown. Deletion of Alpha4 in INS-1832/13 cells prevented HG-induced loss in the expression of Connexin36, a gap junction channel protein, which has been implicated in normal beta cell function. Lastly, depletion of endogenous Alpha4 significantly reduced HG-induced cell death in INS-1832/13 cells. Based on these findings we conclude that Alpha4 contributes to HG-induced metabolic dysfunction of the islet beta cell.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Caspase 3/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Protein Phosphatase 2/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Sphingolipids/metabolism , Sphingolipids/pharmacology , Stress, Physiological , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Cell Physiol Biochem ; 56(2): 120-137, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35362297

ABSTRACT

BACKGROUND/AIMS: Published evidence implicates Caspase recruitment domain containing protein 9 (CARD9) in innate immunity. Given its recently suggested roles in obesity and insulin resistance, we investigated its regulatory role(s) in the onset of islet beta cell dysfunction under chronic hyperglycemic (metabolic stress) conditions. METHODS: Islets from mouse pancreas were isolated by the collagenase digestion method. Expression of CARD9 was suppressed in INS-1 832/13 cells by siRNA transfection using the DharmaFect1 reagent. The degree of activation of Rac1 was assessed by a pull-down assay kit. Interactions between CARD9, RhoGDIß and Rac1 under metabolic stress conditions were determined by co-immunoprecipitation assay. The degree of phosphorylation of stress kinases was assessed using antibodies directed against phosphorylated forms of the respective kinases. RESULTS: CARD9 expression is significantly increased following exposure to high glucose, not to mannitol (both at 20 mM; 24 hrs.) in INS-1 832/13 cells. siRNA-mediated knockdown of CARD9 significantly attenuated high glucose-induced activation of Rac1 and phosphorylation of p38MAPK and p65 subunit of NF-κB (RelA), without significantly impacting high glucose-induced effects on JNK1/2 and ERK1/2 activities. CARD9 depletion also suppressed high glucose-induced CHOP expression (a marker for endoplasmic reticulum stress) in these cells. Co-immunoprecipitation studies revealed increased association between CARD9-RhoGDIß and decreased association between RhoGDIß-Rac1 in cells cultured under high glucose conditions. CONCLUSION: Based on these data, we conclude that CARD9 regulates activation of Rac1-p38MAPK-NFκB signaling pathway leading to functional abnormalities in beta cells under metabolic stress conditions.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , CARD Signaling Adaptor Proteins/genetics , Glucose/metabolism , Glucose/pharmacology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction
5.
Biochem Pharmacol ; 192: 114670, 2021 10.
Article in English | MEDLINE | ID: mdl-34233162

ABSTRACT

Caspase recruitment domain containing protein 9 (CARD9) plays key regulatory role(s) in innate and adaptive immune responses. Recent evidence implicates CARD9 in the onset of metabolic diseases including insulin resistance. However, potential contributory roles of CARD9 in glucose-stimulated insulin secretion (GSIS) remain unknown. Herein, we report that CARD9 is expressed in human islets, rat islets, mouse islets and clonal INS-1 832/13 cells. Subcellularly, CARD9 is predominantly cytosolic (~75%) in INS-1 832/13 cells. siRNA-mediated depletion of CARD9 expression significantly (~50%) suppressed GSIS in INS-1 832/13 cells. Interestingly, glucose-induced activation of Rac1, a small G-protein, which is a requisite for GSIS to occur, is unaffected in CARD9-si transfected cells, suggesting that CARD9-mediates GSIS in a Rac1-independent fashion. Furthermore, insulin secretion promoted by KCl or mastoparan (a global G protein activator), remained resistant to CARD9 depletion in INS-1 832/13 cells. In addition, pharmacological inhibition (BRD5529) of interaction between CARD9 and TRIM62, its ubiquitin ligase, exerted no significant effects on GSIS. Lastly, depletion of CARD9 prevented glucose-induced p38, not ERK1/2 phosphorylation in beta cells. Based on these observations, we propose that CARD9 might regulate GSIS via a Rac1-independent and p38-dependent signaling module.


Subject(s)
CARD Signaling Adaptor Proteins/biosynthesis , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Cells, Cultured , Humans , Mice , Rats , THP-1 Cells
6.
Hear Res ; 407: 108276, 2021 08.
Article in English | MEDLINE | ID: mdl-34107410

ABSTRACT

Magnetic resonance imaging data collection and analysis have been challenges in the field of auditory neuroscience. Recent studies have addressed these concerns by using manganese-enhanced magnetic resonance imaging (MEMRI). Basic challenges for in vivo application of MEMRI in rodents includes how to set inclusion criteria for adequate Mn2+ uptake and whether valid data can be collected from brains postmortem. Since brain Mn2+ uptake is complete within 2-4 h and clearance can take 2-4 weeks, one assumption has been that Mn2+-enhanced R1 values continue to reliably reflect the degree of Mn2+-uptake for some indeterminate time after death. To address these issues, the impact of death on R1 values was determined in rats administered Mn2+ and rats that were not. Images of auditory nuclei were collected at fixed intervals from rats before and after death for up to 10 h postmortem. By taking a ratio of pituitary and muscle T1-W intensities (P/M), a reliable quantitative method for assessing adequate brain Mn2+ uptake was created and suggest that P/M ratios should be adopted to objectively measure the quality of the Mn2+ injection. Postmortem R1 values decreased in all brain regions in both the After Mn2+ and No Mn2+ groups. However, the time-course of postmortem changes in R1 was dependent on brain region and degree of Mn2+ uptake. Thus, postmortem R1 values not only differ after death, but vary with time and across brain regions. Postmortem R1 values in unfixed brain tissue, including the auditory nuclei, should be interpreted with caution.


Subject(s)
Magnetic Resonance Imaging , Animals , Autopsy , Brain/diagnostic imaging , Brain Mapping , Contrast Media , Manganese , Rats
7.
Cell Physiol Biochem ; 55(2): 180-192, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33851799

ABSTRACT

BACKGROUND/AIMS: Published evidence suggests regulatory roles for small G proteins (Cdc42 and Rac1) in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. More recent evidence suggests novel roles for these G proteins, specifically Rac1, in the induction of metabolic dysfunction of the islet beta-cell under the duress of a variety of stress conditions. However, potential upstream regulators of sustained activation of Rac1 have not been identified in the beta-cell. Recent studies in other cell types have identified RhoG, a small G protein, as an upstream regulator of Rac1 under specific experimental conditions. Herein, we examined putative roles for RhoG in islet beta-cell dysregulation induced by glucotoxic conditions. METHODS: Expression of RhoG or GDIγ was suppressed by siRNA transfection using the DharmaFect1 reagent. Subcellular fractions were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagent kit. The degree of activation of Rac1 was assessed using a pull-down assay kit. Extent of cell death was quantified using a Cell Death Detection ELISAplus kit. RESULTS: RhoG is expressed in human islets, rat islets, and clonal INS-1 832/13 cells. siRNA-RhoG markedly attenuated sustained activation of Rac1 and caspase-3 in INS-1 832/13 cells exposed to hyperglycemic conditions (20 mM; 24 hours). In a manner akin to Rac1, which has been shown to translocate to the nuclear fraction to induce beta-cell dysfunction under metabolic stress, a significant increase in the association of RhoG with the nuclear fraction was observed in beta-cells under the duress of metabolic stress. Interestingly, GDIγ, a known regulator of RhoG, remained associated with non-nuclear fraction under conditions RhoG and Rac1 translocated to the membrane. Lastly, siRNA-RhoG modestly attenuated pancreatic beta-cell demise induced by high glucose exposure conditions, but such an effect was not statistically significant. CONCLUSION: Based on these data we conclude that RhoG-Rac1 signaling module plays critical regulatory roles in promoting mitochondrial dysfunction (caspase-3 activation) of the islet beta cell under metabolic stress.


Subject(s)
Hyperglycemia/blood , Insulin-Secreting Cells/metabolism , Animals , Blotting, Western , Cell Line , Humans , Insulin Secretion/genetics , Insulin Secretion/physiology , Male , Mitochondria/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Signal Transduction/physiology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
8.
Sci Rep ; 9(1): 20036, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882735

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 9(1): 16265, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700007

ABSTRACT

Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.

10.
Nanomedicine ; 14(7): 1999-2008, 2018 10.
Article in English | MEDLINE | ID: mdl-29665440

ABSTRACT

Fundamental challenges of targeting specific brain regions for treatment using pharmacotherapeutic nanoparticle (NP) carriers include circumventing the blood-brain-barrier (BBB) and tracking delivery. Angiopep-2 (AP2) has been shown to facilitate the transport of large macromolecules and synthetic nanoparticles across the BBB. Thus, conjugation of AP2 to an MS2 bacteriophage based NP should also permit transport across the BBB. We have fabricated and tested a novel MS2 capsid-based NP conjugated to the ligand AP2. The reaction efficiency was determined to be over 70%, with up to two angiopep-2 conjugated per MS2 capsid protein. When linked with a porphyrin ring, manganese (Mn2+) remained stable within MS2 and was MRI detectable. Nanoparticles were introduced intracerebroventricularly or systemically. Systemic delivery yielded dose dependent, non-toxic accumulation of NPs in the midbrain. Design of a multifunctional MRI compatible NP platform provides a significant step forward for the diagnosis and treatment of intractable brain conditions, such as tinnitus.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Levivirus/chemistry , Magnetic Resonance Imaging , Nanoparticles/administration & dosage , Peptides/chemistry , Tinnitus/drug therapy , Animals , Biological Transport , Drug Carriers , Drug Delivery Systems , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley
11.
Brain Struct Funct ; 223(5): 2343-2360, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29488007

ABSTRACT

Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn2+) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn2+ uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn2+ uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn2+ uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn2+ uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Hearing Loss/etiology , Noise/adverse effects , Tinnitus/etiology , Acoustic Stimulation , Animals , Auditory Threshold , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss/pathology , Hearing Tests , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Reflex, Startle/physiology , Time Factors , Tinnitus/pathology
12.
Int J Pharm ; 527(1-2): 79-91, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28546072

ABSTRACT

Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance.


Subject(s)
Bacterial Vaccines/administration & dosage , Chlamydia Infections/therapy , Dendrimers/chemistry , Animals , Chlamydia trachomatis , Female , Mice, Inbred BALB C , Vaccines, Subunit/administration & dosage
13.
Int J Pharm ; 466(1-2): 258-65, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24607214

ABSTRACT

Chlamydia trachomatis is an intracellular human pathogen that causes a sexually transmitted disease which may result in an inflammatory arthritis designated Chlamydia-induced reactive arthritis (ReA). The arthritis develops after dissemination of infected cells from the initial site of chlamydial infection. During Chlamydia-associated ReA, the organism may enter into a persistent infection state making treatment with antibiotics a challenge. We hypothesize that folate receptors (FR), which are overexpressed in Chlamydia-infected cells, and the associated inflammation would allow folate-targeted nanodevices to better treat infections. To investigate this, we developed a folate-PAMAM dendrimer-Cy5.5 conjugate (D-FA-Cy5.5), where Cy5.5 is used as the near-IR imaging agent. Uptake of D-FA-Cy5.5 upon systemic administration was assessed and compared to non-folate conjugated controls (D-Cy5.5), using a mouse model of Chlamydia-induced ReA, and near-IR imaging. Our results suggested that there was a higher concentration of folate-based nanodevice in sites of infection and inflammation compared to that of the control nanodevice. The folate-conjugated nanodevices localized to infected paws and genital tracts (major sites of inflammation and infection) at 3-4 fold higher concentrations than were dendrimer alone, suggesting that the overexpression of folate receptors in infected and inflamed tissues enables higher dendrimer uptake. There was an increase in uptake into thymus, spleen, and lung, but no significant differences in the uptake of the folate nanodevices in other organs including kidney and heart, indicating the 'relative specificity' of the D-FA-Cy5.5 conjugate nanodevices. These results suggest that folate targeting dendrimers are able to deliver drugs to attenuate infection and associated inflammation in Chlamydia-induced ReA.


Subject(s)
Arthritis, Reactive/metabolism , Carbocyanines/administration & dosage , Chlamydia Infections/metabolism , Dendrimers/administration & dosage , Fluorescent Dyes/administration & dosage , Folic Acid/administration & dosage , Animals , Carbocyanines/chemistry , Chlamydia trachomatis , Dendrimers/chemistry , Female , Fluorescent Dyes/chemistry , Folic Acid/chemistry , Mice , Mice, Inbred BALB C , Prohibitins
14.
Microb Pathog ; 65: 29-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24075820

ABSTRACT

Lack of a system for genetic manipulation of Chlamydia trachomatis has been a key challenge to advancing understanding the molecular genetic basis of virulence for this bacterial pathogen. We developed a non-viral, dendrimer-enabled system for transformation of this organism and used it to characterize the effects of inserting the common 7.5 kbp chlamydial plasmid into strain L2(25667R), a C. trachomatis isolate lacking it. The plasmid was cloned in pUC19 and the clone complexed to polyamidoamine dendrimers, producing ∼83 nm spherical particles. Nearly confluent McCoy cell cultures were infected with L2(25667R) and reference strain L2(434). At 16 h post-infection, medium was replaced with dendrimer-plasmid complexes in medium lacking additives (L2(25667R)) or with additive-free medium alone (L2(434)). Three h later complexes/buffer were removed, and medium was replaced; cultures were harvested at various times post-transformation for analyses. Real time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. A previous report indicated that one or more plasmid-encoded product govern(s) transcription of the glycogen synthase gene (glgA) in standard strains. In L2(25667R) the gene is not expressed, but transformants of that strain given the cloned chlamydial plasmid increase glgA expression, as does L2(434). The cloned plasmid is retained, replicated, and expressed in transformants over at least 5 passages, and GFP is expressed when transformed into growing L2(25667R). This transformation system will allow study of chlamydial gene function in pathogenesis.


Subject(s)
Chlamydia trachomatis/genetics , Glycogen Synthase/genetics , Plasmids/genetics , Transformation, Bacterial/genetics , Dendrimers , Gene Expression Regulation, Bacterial , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Virulence/genetics
15.
Nanomedicine ; 9(7): 996-1008, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23639679

ABSTRACT

The chlamydiae are important human pathogens. Lack of a genetic manipulation system has impeded understanding of the molecular bases of virulence for these bacteria. We developed a dendrimer-enabled system for transformation of chlamydiae and used it to characterize the effects of inserting the C. trachomatis plasmid into C. pneumoniae, which lacks any plasmids. The plasmid was cloned into modified yeast vector pEG(KG) and the clone complexed to polyamidoamine dendrimers, producing 50-100 nm spherical particles. HEp-2 cell cultures were infected with C. pneumoniae strain AR-39. Twenty-four hours later, medium was replaced for 3 hours with dendrimer-plasmid complexes, then removed and the medium replaced. Cultures were harvested at various times post-transformation. Real-time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. The cloned plasmid was replicated and expressed in transformants over 5 passages. This system will allow study of chlamydial gene function, allowing development of novel dendrimer-based therapies. FROM THE CLINICAL EDITOR: This team of investigators developed a dendrimer-enabled system for transformation of chlamydiae and successfully utilized it to characterize the effects of inserting the C. trachomatis plasmid into C. pneumonia. This system will allow study of chlamydial gene function, allowing development of novel dendrimer-based therapies.


Subject(s)
Chlamydophila pneumoniae/metabolism , DNA/metabolism , Dendrimers/chemistry , Gene Transfer Techniques , Transformation, Genetic , Cell Line , Chromosomes, Bacterial/metabolism , DNA Replication , Genes, Bacterial/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Atomic Force , Open Reading Frames/genetics , Particle Size , Plasmids , Static Electricity
16.
Nanomedicine ; 7(6): 935-44, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21658474

ABSTRACT

Chlamydia trachomatis is an important bacterial pathogen known to be etiological in genital infections, as well as several serious disease sequelae, including inflammatory arthritis. Chlamydiae can persist in infection, making treatment with antibiotics such as azithromycin (AZ) a challenge. The authors explore the use of neutral generation-4 polyamidoamine (PAMAM) dendrimers as intracellular drug-delivery vehicles into chlamydial inclusions. Azithromycin was successfully conjugated with the dendrimers, and the conjugate (D-AZ) released ≈ 90% of the drug over 16 hours. The conjugate readily entered both the Chlamydia-infected HEp-2 cells and the chlamydial inclusions. The conjugate was significantly better than free drug in preventing productive infections in the cells when added at the time of infection, and better in reducing the size and number of inclusions when added either 24 hours or 48 hours post infection. These studies show that dendrimers can deliver drugs efficiently to growing intracellular C. trachomatis, even if the organism is in the persistent form. FROM THE CLINICAL EDITOR: In this report, the use of polyamidoamine dendrimers as intracellular drug-delivery vehicles into chlamydial inclusions is investigated. This method results in efficient intracellular delivery of azithromycin to address chlamydia infection.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Azithromycin/administration & dosage , Chlamydia Infections/drug therapy , Chlamydia trachomatis/drug effects , Dendrimers/chemistry , Drug Carriers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Azithromycin/chemistry , Azithromycin/pharmacokinetics , Azithromycin/pharmacology , Cell Line , Cell Membrane Permeability , Humans
17.
Biomaterials ; 32(27): 6606-13, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21652065

ABSTRACT

Chlamydia trachomatis and Chlamydia pneumoniae are intracellular bacterial pathogens that have been shown to cause, or are strongly associated with, diverse chronic diseases. Persistent infections by both organisms are refractory to antibiotic therapy. The lack of therapeutic efficacy results from the attenuated metabolic rate of persistently infecting chlamydiae in combination with the modest intracellular drug concentrations achievable by normal delivery of antibiotics to the inclusions within which chlamydiae reside in the host cell cytoplasm. In this research, we evaluated whether nanoparticles formulated using the biodegradable poly(d-L-lactide-co-glycolide) (PLGA) polymer can enhance the delivery of antibiotics to the chlamydial inclusion complexes. We initially studied the trafficking of PLGA nanoparticles in Chlamydia-infected cells. We then evaluated nanoparticles for the delivery of antibiotics to the inclusions. Intracellular trafficking studies show that PLGA nanoparticles efficiently concentrate in inclusions in both acutely and persistently infected cells. Further, encapsulation of rifampin and azithromycin antibiotics in PLGA nanoparticles enhanced the effectiveness of the antibiotics in reducing microbial burden. Combination of rifampin and azithromycin was more effective than the individual drugs. Overall, our studies show that PLGA nanoparticles can be effective carriers for targeted delivery of antibiotics to intracellular chlamydial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chlamydia Infections/drug therapy , Drug Delivery Systems/methods , Intracellular Space/microbiology , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Azithromycin/pharmacology , Cell Line , Chemistry, Pharmaceutical , Chlamydia trachomatis/drug effects , Coumarins/metabolism , Dose-Response Relationship, Drug , Drug Synergism , Humans , Intracellular Space/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer , Rifampin/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...