Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 169(3): 2080-101, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26351307

ABSTRACT

Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.


Subject(s)
Abscisic Acid/metabolism , Adaptation, Physiological , Arabidopsis/genetics , Gene Expression Regulation, Plant , Histones/genetics , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/radiation effects , Chromatin/genetics , Chromatin/metabolism , DNA Methylation , Droughts , Epigenesis, Genetic , Genes, Reporter , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
2.
Biochem Biophys Res Commun ; 447(2): 285-91, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24709077

ABSTRACT

Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.


Subject(s)
Arabidopsis/cytology , Cellular Senescence/genetics , Cellular Senescence/physiology , Epigenesis, Genetic , Arabidopsis/genetics , Arabidopsis/physiology , Cell Culture Techniques , Cell Line , Cell Proliferation , Cell Survival , Chlorophyll/analysis , Chlorophyll A , DNA Methylation , Fluorescence , Gene Expression , Heterochromatin/chemistry , Heterochromatin/metabolism , Suspensions , Time Factors
3.
PLoS One ; 8(3): e58588, 2013.
Article in English | MEDLINE | ID: mdl-23536800

ABSTRACT

SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.


Subject(s)
Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/metabolism , Adenosine Triphosphatases/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Catalytic Domain , Chromosomal Proteins, Non-Histone/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gibberellins/antagonists & inhibitors , Molecular Sequence Annotation , Mutation , Phenotype , Promoter Regions, Genetic , Quantitative Trait, Heritable , Signal Transduction/drug effects , Transcription Factors/chemistry , Triazoles/pharmacology
4.
Planta ; 229(6): 1281-92, 2009 May.
Article in English | MEDLINE | ID: mdl-19301030

ABSTRACT

In yeast and mammals, ATP-dependent chromatin remodelling complexes of the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologues of conserved subunits of SWI/SNF-type complexes, including Snf2-type ATPases and SWI3-type proteins, participate in analogous processes in Arabidopsis. Recent studies indicate a remarkable similarity between phenotypic effects of mutations in the SWI3 homologue ATSWI3C and bromodomain-ATPase BRM genes. To verify the extent of functional similarity between BRM and ATSWI3C, we have constructed atswi3c brm double mutants and compared their phenotypic traits to those of simultaneously grown single atswi3c and brm mutants. In addition to inheritance of characteristic developmental abnormalities shared by atswi3c and brm mutants, some additive brm-specific traits were also observed in the atswi3c brm double mutants. Unlike atswi3c, the brm mutation results in the enhancement of abnormal carpel development and pollen abortion leading to complete male sterility. Despite the overall similarity of brm and atswi3c phenotypes, a critical requirement for BRM in the differentiation of reproductive organs suggests that its regulatory functions do not entirely overlap those of ATSWI3C. The detection of two different transcript isoforms indicates that BRM is regulated by alternative splicing that creates an in-frame premature translation stop codon in its SNF2-like ATPase coding domain. The analysis of Arabidopsis mutants in nonsense-mediated decay suggests an involvement of this pathway in the control of alternative BRM transcript level.


Subject(s)
Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Mutation , RNA-Binding Proteins/metabolism , Adenosine Triphosphatases/genetics , Alternative Splicing , Arabidopsis Proteins/genetics , Blotting, Northern , Blotting, Western , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/ultrastructure , Gene Expression Profiling , Gene Expression Regulation, Plant , Microscopy, Electron, Scanning , Mutagenesis, Insertional , Phenotype , Pollen/genetics , Pollen/metabolism , Pollen/ultrastructure , Protein Subunits/genetics , Protein Subunits/metabolism , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Suppression, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...