Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fresenius J Anal Chem ; 370(5): 624-8, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11496996

ABSTRACT

The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.

2.
Environ Sci Technol ; 35(2): 292-9, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11347600

ABSTRACT

The isotopic composition and concentrations of Pb in the sediments of the Sea of Galilee (Lake Kinneret) were measured. The studied sediments have been deposited in the lake since the early 1900s (ca. 1920), hence Pb data record the transition from a period when the lake vicinity was sparsely populated to the present (approximately 100,000 people living in the area around the lake). In general, there is either a constant or a relatively slow increase in Pb concentrations from 40 cm depth (3.5-4.4 microg/g; ca. 1920) to 17 +/- 2 cm below the sediment-water interface (3.7-7.2 microg/g;), which was deposited in the mid-1960s. From 17 +/- 2 cm below the surface, there is a much faster increase up to 7 +/- 2 cm below the surface (from 6.5 to 11.5 microg/g; 1982-1983), and from 7 +/- 2 cm there is a gradual decrease in Pb concentrations toward the sediment-water interface. At station G, near the outlet of the Jordan River, Pb concentrations drop between 29 and 25 cm below the surface, probably reflecting changes in the particulate load of the Jordan River due to the drying out of the Hula Swamp in the early 1950s. 206Pb/207Pb values in all the stations record most of the shifts displayed by Pb concentrations in the sediment. The estimated value of total Pb deposited annually in the lake sediment in the early 1990s is very close to the value obtained from measurements of Pb fluxes to the lake from eolian and fluvial sources. On the basis of the linear relationship between 206Pb/207Pb (or 208Pb/207Pb) and 1/[Pb], we argue that two end-members contribute most of the Pb to the lake sediments. Sources of Pb to the lake include (i) the weathering of basalt from the eastern Galilee and the Golan Heights contributing 2.6 +/- 0.5 microg/g Pb to the sediment and (ii) anthropogenic Pb that is affecting both surface and deep (from 30 to 40 cm) lake sediments. At station S, a third source, Pb released from soils developed on carbonates, should be considered as well.


Subject(s)
Lead/analysis , Water Pollutants, Chemical/analysis , Isotopes , Israel
3.
Talanta ; 54(2): 307-17, 2001 Apr 12.
Article in English | MEDLINE | ID: mdl-18968253

ABSTRACT

Different mass analysers [(quadrupole (Q), time-of-flight (TOF) and multicollector (MC) sector-field (SF)] of ions produced in an inductively coupled plasma were evaluated for the determination of lead isotope ratios in wine samples. A population of 20 wines of different origin including two reference wines from the EC Standards, Measurement and Testing Programme with concentrations varying between 7-140 mug Pb l(-1) was investigated. Wines were analyzed directly by Q ICP MS and MC ICP MS. The poor sensitivity of the TOF instrument, further aggravated by matrix signal suppression, did not allow the acquisition of data for wine samples that contained less than 50 mug l(-1) in the direct sample introduction mode. The separation and preconcentration of lead were therefore required. The precision obtained for the (206)Pb/(207)Pb and (208)Pb/(206)Pb were similar and equal to 0.14-2.7% for Q ICP MS, 0.04-0.17% for TOF ICP MS and 0.01-0.12% for MC ICP MS. The precision for (206)Pb/(204)Pb was 0.44-5.29, 0.15-1.7, 0.08-1.6%, respectively. On the level of accuracy, the data from TOF ICP MS and MC ICP MS were in good agreement. The accuracy of Q ICP MS data was judged satisfactory in comparison with the other techniques but their poor precision was a significant obstacle on the way of using these data for the determination of the geographic origin of wine.

4.
Health Phys ; 74(3): 337-45, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9482599

ABSTRACT

The uptake of uranium, ingested as a soluble compound, was studied by monitoring the uranium level in urine by inductively coupled plasma mass spectrometry and through measurement of an isotopic tracer. The high sensitivity of this method allows measurement of uranium levels in urine samples from each voiding, therefore more detailed biokinetic studies are possible. To simulate low "acute intake," five volunteers with "normal" levels (5-15 ng L(-1)) of uranium in urine ingested a grapefruit drink spiked with 100 microg of uranium (235U/238U = 0.245%) as uranyl nitrate, and the level of uranium in their urine after ingestion was monitored. Two techniques were applied to estimate the extent of exposure: a) uranium levels above the normal level for each volunteer; and b) the deviation from natural isotopic ratio. Results were normalized relative to the creatinine concentration, which served as an indicator of urine dilution, to reduce effects due to diurnal changes. The results clearly indicate that currently accepted bio-kinetic models overestimate the time between ingestion of dissolved uranium and its excretion in urine, the maximum of which was found to be around 6-10 h. The uptake fraction was in agreement with recent studies, i.e., 0.1-0.5% of the ingested uranium for four of the subjects but above 1.5% for the fifth, and well below the 5% reported in International Commission on Radiation Protection Publication 54. Finally, partial results from the isotope dilution study indicate that uranium absorbed through the intestine interchanges with uranium retained in body organs. The time scale of this process is quite short, and the acute exposure led to a minimum in the isotopic ratio within hours, while recovery back to natural abundance due to low chronic exposure takes several days.


Subject(s)
Uranium/pharmacokinetics , Adult , Creatinine/urine , Humans , Intestinal Absorption , Male , Mass Spectrometry/methods , Middle Aged , Models, Biological , Radioisotope Dilution Technique , Uranium/administration & dosage , Uranium/urine
5.
Health Phys ; 74(1): 86-90, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9415585

ABSTRACT

"Spot samples" of urine are routinely used to monitor occupational exposure to uranium and other toxic heavy metals, such as mercury, lead, and cadmium. In the present work, it was shown that diurnal variations in the uranium concentration in different urine samples from the same individual could be quite large. However, these variations were in correlation to the creatinine level of the same samples, with values of R = 0.72-0.99, for the five subjects studied here. Thus, it is proposed here that uranium concentrations in "spot" urine samples be expressed in terms of ng uranium g(-1) creatinine rather than ng uranium L(-1). Once the 24-h creatinine level is estimated for the individual based on weight, height and age, the adjusted values can be used for determination of the internal dose of uranium.


Subject(s)
Creatinine/urine , Occupational Exposure , Radiation Monitoring/methods , Uranium/urine , Circadian Rhythm , Humans , Reference Standards
6.
Health Phys ; 71(6): 879-85, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8919071

ABSTRACT

A simple method, based on inductively coupled plasma mass spectrometry, for determination of uranium in urine at levels that indicate occupational exposure, is presented. Sample preparation involves a fifty-fold dilution of the urine by nitric acid (2% HNO3) and no other chemical treatment or separation. The analysis itself is completed in under 3 min. The analytical procedure is fully automated so that a technician may perform over 100 analyses per day. With proper control of the blank contribution, a lower limit of detection of 3 ng L(-1) in the original urine sample was achieved. Uranium concentrations in the range 6-30 ng L(-1) were found in urine samples of people that are not occupationally exposed. The validity of the results was demonstrated through measurement of standards, controlled uranium addition experiments and, at higher concentrations, by comparison with results obtained by an independent method based on laser induced fluorescence. The laser induced fluorescence technique was found to be sufficient for detection of occupational exposure at an action level of 1.5 microg L(-1). Use of internal standards, indium, and thallium, improved quantification by about 10%, but was not deemed necessary for routine analysis. The inductively coupled plasma mass spectrometry is also ideally suited for monitoring uranium in fresh water and drinking water, as no sample dilution is required and the lower limit of detection is below 0.15 ng L(-1).


Subject(s)
Occupational Exposure , Uranium/analysis , Uranium/urine , Water Supply/analysis , Humans , Lasers , Mass Spectrometry/methods , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Fluorescence/methods , Water Pollution, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...