Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 14527, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267249

ABSTRACT

As a new crop in Malaysia, forty-four Bambara groundnut (Vigna subterranea L. verdc.) genotypes were sampled from eleven distinct populations of different origins to explore the genetic structure, genetic inconsistency, and fixation index. The Bambara groundnut, an African underutilized legume, has the capacity to boost food and nutrition security while simultaneously addressing environmental sustainability, food availability, and economic inequalities. A set of 32 ISSRs were screened out of 96 primers based on very sharp, clear, and reproducible bands which detected a total of 510 loci with an average of 97.64% polymorphism. The average calculated value of PIC = 0.243, RP = 5.30, H = 0.285, and MI = 0.675 representing the efficiency of primer set for genetic differentiation among the genotypes. The ISSR primers revealed the number of alleles (Na = 1.97), the effective number of alleles (Ne = 1.38), Nei's genetic diversity (h = 0.248), and a moderate level of gene flow (Nm = 2.26) across the genotypes studied. The estimated Shannon's information index (I = 0.395) indicates a high level of genetic variation exists among the accessions. Based on Nei's genetic dissimilarity a UPMGA phylogenetic tree was constructed and grouped the entire genotypes into 3 major clusters and 6 subclusters. PCA analysis revealed that first principal component extracted maximum variation (PC1 = 13.92%) than second principal component (PC2 = 12.59%). Bayesian model-based STRUCTURE analysis assembled the genotypes into 3 (best ΔK = 3) genetic groups. The fixation-index (Fst) analysis narrated a very great genetic diversity (Fst = 0.19 to 0.40) exists within the accessions of these 3 clusters. This investigation specifies the effectiveness of the ISSR primers system for the molecular portrayal of V. subterranea genotypes that could be used for genetic diversity valuation, detection, and tagging of potential genotypes with quick, precise, and authentic measures for this crop improvement through effective breeding schemes.


Subject(s)
Genetic Markers , Polymorphism, Genetic , Vigna/genetics , Chromosome Mapping , DNA Fingerprinting , Genetic Drift , Genetic Variation , Genetics, Population , Malaysia , Microsatellite Repeats/genetics , Principal Component Analysis
3.
Plants (Basel) ; 9(11)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203189

ABSTRACT

Grafting is regarded as an integral component of sustainable vegetable production. It is important in the management of soil-borne diseases, and reports suggest that grafting with viable rootstocks can enhance crop growth and yield. This research was conducted using splices and cleft grafting techniques to investigate graft compatibility among varieties of high yielding eggplant scion (MCV1, MCV2, CCV1, CCV2, CCV3, NCV, and TCV) grafted onto wild rootstocks (MWR, BWR, and TWR) to study their morphophysiological and yield characteristics. High yielding scions grafted onto wild relative rootstocks were compared with two controls including self-grafted and non-grafted. All the scion had a high rate of germination (≥95%) and remarkable graft success (100%) was recorded in MCV1, MCV2, and TCV using the cleft techniques. Generally, the use of rootstocks resulted in higher total and marketable fruit yield compared to the non-grafted and self-grafted scion plants, respectively. In particular, MWR and TWR rootstock conferred the highest vigour to the scion, resulting in the highest values recorded for total and marketable fruit yield, number of fruits per plant and average fruit weight. A similar result was obtained in fruit length and diameter, where long and wide fruits were observed in scions grafted onto MWR and TWR rootstocks, respectively. Grafting of high yielding eggplant scion onto resistant MWR, BWR and TWR eggplant rootstock was found to be beneficial for eggplant cultivation. The remarkable compatibility and vigour of the rootstock with scion led to the improvement in total and marketable yield of the fruits. As such, it can be concluded that the use of wild relative rootstocks of eggplant species can be a valuable method of improving eggplant production.

4.
Plants (Basel) ; 9(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937908

ABSTRACT

Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.

SELECTION OF CITATIONS
SEARCH DETAIL
...