Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nucl Med Commun ; 45(8): 736-744, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38745508

ABSTRACT

OBJECTIVE: We aimed to compare different segmentation methods used to calculate prognostically valuable volumetric parameters, somatostatin receptor expressing tumor volume (SRETV), and total lesion somatostatin receptor expression (TLSRE), measured by 68 Ga-DOTATATE PET/CT and to find the optimal segmentation method to predict prognosis. PATIENTS AND METHODS: Images of 34 patients diagnosed with gastroenteropancreatic neuroendocrine tumor (GEPNET) who underwent 68 Ga-DOTATATE PET/CT imaging were reanalyzed. Four different threshold-based methods (fixed relative threshold method, normal liver background threshold method, fixed absolute standardized uptake value (SUV) threshold method, and adaptive threshold method) were used to calculate SRETV and TLSRE values. SRETV of all lesions of a patient was summarized as whole body SRETV (WB-SRETV) and TLSRE of all lesions of a patient was computed as whole body TLSRE (WB-TLSRE). RESULTS: WB-SRETVs calculated with all segmentation methods were statistically significantly associated with progression-free survival except WB-SRETV at which was calculated using adaptive threshold method. The fixed relative threshold methods calculated by using 45% (WB-SRETV 45% ) and 60% (WB-SRETV 60% ) of the SUV value as threshold respectively, were found to have statistically significant highest prognostic value (C-index = 0.704, CI = 0.622-0.786, P  = 0.007). Among WB-TLSRE parameters, WB-TLSRE 35% , WB-TLSRE 40% , and WB-TLSRE 50% had the highest prognostic value (C-index = 0.689, CI = 0.604-0.774, P  = 0.008). CONCLUSION: The fixed relative threshold method was found to be the most effective and easily applicable method to measure SRETV on pretreatment 68 Ga-DOTATATE PET/CT to predict prognosis in GEPNET patients. WB-SRETV 45% (cutoff value of 11.8 cm 3 ) and WB-SRETV 60% (cutoff value of 6.3 cm 3 ) were found to be the strongest predictors of prognosis in GEPNET patients.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Organometallic Compounds , Pancreatic Neoplasms , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin , Stomach Neoplasms , Tumor Burden , Humans , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Receptors, Somatostatin/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Male , Intestinal Neoplasms/diagnostic imaging , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Female , Middle Aged , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Prognosis , Adult , Aged , Image Processing, Computer-Assisted/methods , Retrospective Studies , Aged, 80 and over
2.
Ann Nucl Med ; 37(2): 131-138, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436111

ABSTRACT

OBJECTIVE: Transarterial radioembolization (TARE) with Yttrium-90 (90Y) labeled microspheres is an effective locoregional treatment option for patients with primary and metastatic liver cancer. However, TARE is also associated with radiation-induced lung injury due to hepatopulmonary shunting. If a large proportion of the injected radionuclide microspheres (more than 15%) is shunted, a rare but lethal complication may develop: radiation-induced pneumonitis (RP). Diffusion capacity of the lungs for carbon monoxide (DLCO) is a valuable test to assess lung function and a decrease in DLCO may indicate an impairment in gas exchange caused by the lung injury. Some previous researches have been reported the most consistent changes in pulmonary function tests after external beam radiotherapy are recorded with DLCO. This study aimed to examine the changes in DLCO after TARE with glass microspheres in newly treated and retreated patients with relatively higher lung shunt fractions. METHODS: We prospectively analyzed forty consecutive patients with liver malignancies who underwent lobar or superselective TARE with 90Y glass microspheres. DLCO tests were performed at baseline and on days 15, 30, and 60 after the treatment. All patients were followed up clinically and radiologically for the development of RP. RESULTS: A statistically significant decrease was found in the DLCO after the first treatment (81.4 ± 13.66 vs. 75.25 ± 13.22, p = 0.003). The frequency of the patients with impaired DLCO at baseline was significantly increased after the first treatment (37.5 vs 57.5% p < 0.05). In the retreated group (n = 8), neither the DLCO (71.5 ± 10.82 vs. 67.50 ± 11.24, p = 0.115) nor the frequency of patients with impaired DLCO (25 vs 25%, p = 1) did not significantly change. Also, the change in DLCO values did not significantly correlate with lung shunt fraction, administered radiation dose, and absorbed lung dose after the first and second treatments (p > 0.05 for all). None of the patients developed RP. CONCLUSION: Our study showed that a significant reduction in DLCO after TARE may occur in patients with relatively higher lung shunt fractions. Further studies with larger sample sizes are needed to better investigate the changes in DLCO in patients with high lung shunt fractions.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Lung Injury , Humans , Lung Injury/etiology , Lung Injury/therapy , Lung/diagnostic imaging , Embolization, Therapeutic/adverse effects , Liver Neoplasms/pathology , Liver Neoplasms/radiotherapy , Yttrium Radioisotopes/therapeutic use , Treatment Outcome , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Microspheres
3.
Opt Lett ; 46(4): 741-744, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577503

ABSTRACT

We demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.72 µJ terahertz energy is obtained at a frequency of 0.5 THz with a 3 GHz bandwidth. A maximum internal optical-to-terahertz conversion efficiency of 0.16% is achieved, which is comparable with results achieved using periodically poled lithium niobate crystal. Neither photorefractive effects nor damage was observed with up to 900mJ/cm2, showing the great potential of Rb:PPKTP for multi-millijoule-level MC-THz generation.

4.
PLoS One ; 11(4): e0152615, 2016.
Article in English | MEDLINE | ID: mdl-27054755

ABSTRACT

A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.


Subject(s)
Electronics/instrumentation , Fractals , Computer Simulation , Equipment Design , Microwaves , Miniaturization , Models, Theoretical
5.
Nucl Med Commun ; 37(1): 9-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26440568

ABSTRACT

AIM: To compare response assessment according to the WHO, RECIST 1.1, EORTC, and PERCIST criteria in patients diagnosed with malignant solid tumors and who had received cytotoxic chemotherapy to establish the strength of agreement between each criterion. MATERIALS AND METHODS: Sixty patients with malignant solid tumors were included in this retrospective study. The baseline and the sequential follow-up fluorine-18-fluorodeoxyglucose PET/computed tomography (CT) of each patient were evaluated according to the WHO, RECIST 1.1, EORTC, and PERCIST criteria. PET/CT images were used for both metabolic and anatomic evaluation. The concurrent diagnostic CT and MRI images (performed within 1 week of PET/CT) were also utilized when needed. The results were compared using the κ-statistics. RESULTS: The response and progression rates according to the WHO criteria were 37 and 38%, respectively. The same ratios were also found for RECIST 1.1 (κ=1). The response and progression rates according to the EORTC criteria were 47 and 40%, respectively. When PERCIST criteria were used, one patient with progressive disease was upgraded to stable disease (κ=0.976). As we found the same results with WHO and RECIST 1.1 criteria, we used WHO criteria to compare the anatomic and metabolic criteria. When we compared the WHO and EORTC criteria, there was an agreement in 80% of the patients (κ=0.711). With WHO and PERCIST criteria, there was an agreement in 81.6% of the patients (κ=0.736). CONCLUSION: Significant agreement was detected when the WHO, RECIST 1.1, EORTC, and PERCIST criteria were compared both within as well as between each other.


Subject(s)
Neoplasms/drug therapy , Response Evaluation Criteria in Solid Tumors , Europe , Female , Humans , Male , Middle Aged , Neoplasms/metabolism , Neoplasms/pathology , Retrospective Studies , World Health Organization
6.
PLoS One ; 9(12): e115412, 2014.
Article in English | MEDLINE | ID: mdl-25536436

ABSTRACT

This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.


Subject(s)
Computer Simulation , Electronics/instrumentation , Filtration/instrumentation , Fractals , Electric Conductivity , Equipment Design , Models, Theoretical
7.
Appl Opt ; 53(17): 3758-63, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24921142

ABSTRACT

Using the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens. Upon arriving at the receiver plane, detection is performed in a circuitry consisting of a pin photodiode and a matched filter. The symbols detected are compared with the transmitted ones, errors are counted, and from there the probability of error is evaluated numerically. Within the range of source and propagation parameters tested, the lowest probability of error is obtained for the annular Gaussian beam. Our investigation reveals that there is hardly any difference between the aperture-averaged scintillations of the beams used, and the distinctive advantage of the annular Gaussian beam lies in the fact that the receiver aperture captures the maximum amount of power when this particular beam is launched from the transmitter plane.

8.
Appl Opt ; 53(11): 2290-6, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24787396

ABSTRACT

We analyze the properties of Ince-Gaussian beams propagating in turbulent atmosphere. Due to analytic difficulties, this analysis is done with the aid of a random phase screen setup. Intensity profile, beam size, and the kurtosis parameter are evaluated against the changes in beam orders, propagation distance, and turbulence levels. It is found that when propagating in turbulence, Ince-Gaussian beams will no longer keep their beam profile invariant like in free space but will experience beam profile changes. These changes will cause additional beam spreading, as well as an increase in beam size and the kurtosis parameter.

9.
Opt Express ; 21(2): 2154-64, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23389196

ABSTRACT

In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.


Subject(s)
Atmosphere/chemistry , Light , Models, Theoretical , Nephelometry and Turbidimetry/methods , Scattering, Radiation , Wind , Computer Simulation , Nonlinear Dynamics
10.
Appl Opt ; 52(33): 8032-9, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24513754

ABSTRACT

Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

11.
Opt Lett ; 37(2): 184-6, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22854461

ABSTRACT

The scintillation index of a Gaussian Schell-model beam with twist phase (i.e., twisted GSM beam) in weak turbulent atmosphere is formulated with the help of a tensor method. Variations of the scintillation index of a twisted GSM beam on propagation in turbulent atmosphere are studied in detail. It is interesting to find that the scintillation index of a twisted GSM beam can be smaller than that without twist phase in weak turbulent atmosphere. Thus, modulation of the twist phase of a partially coherent beam provides a new way to reduce turbulence-induced scintillation.

12.
Opt Express ; 18(7): 6922-8, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20389712

ABSTRACT

The analytical formula for the effective radius of curvature of radial Gaussian array beams propagating through atmospheric turbulence is derived, where coherent and incoherent beam combinations are considered. The influence of turbulence on the effective radius of curvature of radial Gaussian array beams is studied by using numerical calculation examples.

13.
Opt Express ; 17(20): 17344-56, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19907520

ABSTRACT

Analytical formula is derived for the M(2)-factor of coherent and partially coherent dark hollow beams (DHB) in turbulent atmosphere based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. Our numerical results show that the M(2)- factor of a DHB in turbulent atmosphere increases on propagation, which is much different from its invariant properties in free-space, and is mainly determined by the parameters of the beam and the atmosphere. The relative M(2)-factor of a DHB increases slower than that of Gaussian and flat-topped beams on propagation, which means a DHB is less affected by the atmospheric turbulence than Gaussian and flat-topped beams. Furthermore, the relative M(2)-factor of a DHB with lower coherence, longer wavelength and larger dark size is less affected by the atmospheric turbulence. Our results will be useful in long-distance free-space optical communications.


Subject(s)
Atmosphere/chemistry , Light , Models, Theoretical , Refractometry/methods , Scattering, Radiation , Computer Simulation
14.
Opt Express ; 17(13): 11130-9, 2009 Jun 22.
Article in English | MEDLINE | ID: mdl-19550513

ABSTRACT

The propagation of an elegant Hermite-Gaussian beam (EHGB) in turbulent atmosphere is investigated. Analytical propagation formulae for the average intensity and effective beam size of an EHGB in turbulent atmosphere are derived based on the extended Huygens-Fresnel integral. The corresponding results of a standard Hermite-Gaussian beam (SHGB) in turbulent atmosphere are also derived for the convenience of comparison. The intensity and spreading properties of EHGBs and SHGBs in turbulent atmosphere are studied numerically and comparatively. It is found that the propagation properties of EHGBs and SHGBs are much different from their properties in free space, and the EHGB and SHGB with higher orders are less affected by the turbulence. What's more, the SHGB spreads more rapidly than the EHGB in turbulent atmosphere under the same conditions. Our results will be useful in long-distance free-space optical communications.

15.
Appl Opt ; 48(10): 1943-54, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19340150

ABSTRACT

For an incidence composed of partially coherent multiple Gaussian beams, Huygens-Fresnel principle-based on-axis scintillation index is formulated in a weakly turbulent homogeneous horizontal atmospheric path. Our general formulation is applied to two examples of partially coherent annular and partially coherent flat-topped Gaussian beams. Compared to partially coherent single Gaussian beam scintillations, annular beam scintillations seem to possess higher values for all partial coherence levels, whereas flat-topped Gaussian beam intensity fluctuations are slightly larger, especially at lower coherence levels and at larger source sizes. At the same source partial coherence, annular beams exhibit smaller scintillations for larger ring sizes. For flat-topped Gaussian beams, except for very small and very large source sizes, as the number of Gaussian beams forming the flatness increases, intensity fluctuations also increase, a trend applicable for different degrees of coherence. A trend valid for both single and multiple Gaussian incidence, except for certain annular beams of large primary beam sizes, is that the scintillations decrease as the source becomes less coherent. Being applicable for all degrees of source coherences, for both beams examined, scintillations increase steadily as the Rytov plane wave scintillation index increases.

16.
J Opt Soc Am A Opt Image Sci Vis ; 26(2): 387-94, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19183693

ABSTRACT

The scintillation index is formulated for modified Bessel-Gaussian beams propagating in weakly turbulent media. Numerical calculations applied directly to the derived triple integral show that, for off-axis positions, the modified Bessel-Gaussian beams of higher than zero order scintillate less than Gaussian beams at large input beam sizes and low beam orders with the increasing width parameter initially contributing positively to this phenomenon of less scintillation. As the beam order exceeds two, this advantage is diminished. The modified Bessel-Gaussian beam of order zero is a special case, however, exhibiting lowest scintillation at small input beam sizes. When considered against the propagation length, higher-order modified Bessel-Gaussian beams continue to offer less scintillation than those of order zero. At various radial positions, the scintillation index of modified Bessel-Gaussian beams with orders higher than zero attains small values toward the beam edges but rises sharply when approaching the beam axis. The effect of inner and outer scales of turbulence is also studied, and it is found that while increasing the inner scale of turbulence seems to cause increases in scintillation, the influence of the outer scale is hardly noticeable.

17.
Opt Express ; 17(3): 1753-65, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19189005

ABSTRACT

Propagations of coherent and partially coherent flat-topped beams through a focusing optical system are formulated. The radiation force on a Rayleigh dielectric sphere induced by focused coherent and partially coherent flat-topped beams is investigated theoretically. It is found that we can increase the transverse trapping range at the planes near the focal plane by increasing the flatness (i.e., beam order) of the flat-topped beam, and increase the transverse and longitudinal trapping ranges at the focal plane by decreasing the initial coherence of the flat-topped beam. Moreover the trapping stiffness of flat-topped beam becomes lower as the beam order increases or the initial coherence decreases. The trapping stability is also analyzed.

18.
Appl Opt ; 47(32): 5971-5, 2008 Nov 10.
Article in English | MEDLINE | ID: mdl-19002220

ABSTRACT

In order to analyze the effect of beam type on free space optical communication systems, bit error rate (BER) values versus signal-to-noise ratio (SNR) are calculated for zero order and higher order general beam types, namely for Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams. BER analysis is based on optical scintillation using log-normal distribution for the intensity, which is valid in weak atmospheric turbulence. BERs for these beams are plotted under variations of propagation length, source size, wavelength of operation, and order of the beam. According to our graphical outputs, at small source sizes and long propagation distances, the smallest BER value is obtained for the annular beam. On the other hand, at large source size and small propagation distance, the smallest BER value is obtained for the cos-Gaussian beam. Moreover, our study of the order of the beam shows that higher order beams have lower BER values than the zero order beams at longer propagation distances. But this drop compared with the order seems to be incremental.

19.
J Opt Soc Am A Opt Image Sci Vis ; 25(11): 2710-20, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18978848

ABSTRACT

On the basis of the unified theory of coherence and polarization, we investigate the behavior of the state of polarization of a stochastic electromagnetic beam in a Gaussian cavity. Formulations both in terms of Stokes parameters and in terms of polarization ellipse are given. We show that the state of polarization stabilizes, except in the case of a lossless cavity, after several passages between the mirrors, exhibiting monotonic or oscillatory behavior depending on the parameters of the resonator. We also find that an initially (spatially) uniformly polarized beam remains nonuniformly polarized even for a large number of passages between the mirrors of the cavity.

20.
Opt Express ; 16(20): 15834-46, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18825220

ABSTRACT

Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam.


Subject(s)
Electromagnetic Phenomena , Lasers , Optics and Photonics , Algorithms , Atmosphere , Computer Simulation , Equipment Design , Light , Normal Distribution , Refractometry , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...