Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(3): 893-903, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37796674

ABSTRACT

In neurosurgery, a current challenge is to provide localized therapy in deep and difficult-to-access brain areas with millimeter accuracy. In this prospect, new surgical devices such as microrobots are being developed, which require controlled inbrain navigation to ensure the safety and efficiency of the intervention. In this context, the device tracking technology has to answer a three-sided challenge: invasiveness, performance, and facility of use. Although ultrasound seems appropriate for transcranial tracking, the skull remains an obstacle because of its significant acoustic perturbations. A compact and affordable ultrasound-based tracking system that minimizes skull-related disturbances is proposed here. This system consists of three emitters fixed on the patient's head and a one-millimeter receiver embedded in the surgical device. The 3D position of the receiver is obtained by trilateration based on time of flight measurements. The system demonstrates a submillimeter tracking accuracy through an 8.9 mm thick skull plate phantom. This result opens multiple perspectives in terms of millimeter accurate navigation for a large number of neurobiomedical devices.


Subject(s)
Head , Skull , Humans , Ultrasonography , Skull/diagnostic imaging , Brain/diagnostic imaging , Brain/surgery , Phantoms, Imaging
2.
IEEE Trans Haptics ; 14(3): 668-674, 2021.
Article in English | MEDLINE | ID: mdl-33844631

ABSTRACT

Metamaterials are solid lattices with periodicities commensurate with desired wavelengths. Their geometric features can endow the bulk material with unusual properties, such as inter alia, negative indices of refraction or unique absorbing qualities. Mesoscale metamaterials and phononic crystals can be designed to cause the occurence of band gaps in the ultrasonic domain. These localised phenomena induce fixed boundary conditions that correspond to acoustic mirrors which, in turn, can be used to establish waveguides in thin plates. Ultrasonic lubrication has been successfully applied to create haptic interfaces that operate by modulating the apparent friction of a surface. In this article, we demonstrate that phononic crystals can be designed to localise the modulation of friction in specific portions of the surface of a thin plate, opening novel possibilities for the design of surface haptic interfaces.


Subject(s)
Acoustics , Ultrasonics , Friction , Humans , Lubrication
3.
IEEE Trans Haptics ; 13(3): 588-599, 2020.
Article in English | MEDLINE | ID: mdl-31831439

ABSTRACT

A common approach to visio-haptic human-machine interfaces adopts a simpler design by shifting grounded force feedback away from the virtual scene. The alternative design favors intuitiveness by displaying visual and grounded force feedback at the same location (i.e. visuo-haptic co-location) but requires a sensibly more complex implementation and a tedious kinematic conception. The benefits of one approach over the other had not been fully investigated. Notably, (i) while users seem to better operate under co-located condition, it's not always the case. (ii) In the case of a desktop interface, the cost of a complex implementation to achieve co-location is challenged. We aim here to resolve (i) by conducting a user-centered experiment in which participants performed two generic tasks in co-located and delocated configurations, and comparing their performances. Additionally, we intend to fill the gap (ii) by testing a design without continuous head tracking, i.e., with static co-location. Participants' performances are assessed in terms of execution time, accuracy and force variation, while their subjective experiences are collected via a survey. Findings indicate that co-located configurations lead to shorter execution times, more accurate motions, better management of forces and are largely preferred by users, even when the co-location is pre-calibrated statically.


Subject(s)
Feedback, Sensory/physiology , Touch Perception/physiology , User-Computer Interface , Virtual Reality , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
4.
Micromachines (Basel) ; 10(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597299

ABSTRACT

Single-cell manipulation is considered a key technology in biomedical research. However, the lack of intuitive and effective systems makes this technology less accessible. We propose a new tele-robotic solution for dexterous cell manipulation through optical tweezers. A slave-device consists of a combination of robot-assisted stages and a high-speed multi-trap technique. It allows for the manipulation of more than 15 optical traps in a large workspace with nanometric resolution. A master-device (6+1 degree of freedom (DoF)) is employed to control the 3D position of optical traps in different arrangements for specific purposes. Precision and efficiency studies are carried out with trajectory control tasks. Three state-of-the-art experiments were performed to verify the efficiency of the proposed platform. First, the reliable 3D rotation of a cell is demonstrated. Secondly, a six-DoF teleoperated optical-robot is used to transport a cluster of cells. Finally, a single-cell is dexterously manipulated through an optical-robot with a fork end-effector. Results illustrate the capability to perform complex tasks in efficient and intuitive ways, opening possibilities for new biomedical applications.

5.
PLoS One ; 9(10): e108895, 2014.
Article in English | MEDLINE | ID: mdl-25271636

ABSTRACT

We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface.


Subject(s)
Touch/physiology , Animals , Insecta , Models, Biological
6.
Nanotechnology ; 24(6): 065502, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23340092

ABSTRACT

A novel dual tip nanomanipulation atomic force microscope (AFM) platform operating in ambient conditions is presented. The system is equipped with a high frequency quartz piezoelectric self-sensing scanning probe for fast imaging and a passive cantilever for manipulation. The system is validated by imaging and selective pushing/pulling of gold colloid beads (diameters from 80 to 180 nm). This provides a more compact integration compared to an external optical lever and avoids several of its drawbacks such as optical interference and noise, and recalibration in the case of a moving cantilever and a fixed laser source and photodiode sensor. Moreover, as the quartz oscillator exhibits oscillation amplitudes in the sub-picometer range with a resonant frequency in the megahertz range, this dynamic force sensor is ideal for fast AFM imaging. Experiments show an increase by five times in imaging speed compared to a classical AFM system.

7.
Opt Express ; 17(12): 10259-64, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506679

ABSTRACT

Optical tweezers are a powerful tool for micromanipulation and measurement of picoNewton sized forces. However, conventional interfaces present difficulties as the user cannot feel the forces involved. We present an interface to optical tweezers, based around a low-cost commercial force feedback device. The different dynamics of the micro-world make intuitive force feedback a challenge. We propose a coupling method using an existing optical tweezers system and discuss stability and transparency. Our system allows the user to perceive real Brownian motion and viscosity, as well as forces exerted during manipulation of objects by a trapped bead.


Subject(s)
Optical Tweezers , Transducers , User-Computer Interface , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feedback , Miniaturization , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical
8.
Rev Sci Instrum ; 79(9): 096101, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19044455

ABSTRACT

A novel method that uses a small mechanical lever has been developed to directly calibrate the lateral sensitivity of the optical lever in the atomic force microscope (AFM). The mechanical lever can convert the translation into a nanoscale rotation angle with a flexible hinge that provides an accurate conversion between the photodiode voltage output and torsional angle of a cantilever. During the calibration, the cantilever is mounted on a holder attached on the lever, which brings the torsional axis of the cantilever and rotation axis of the lever into line. By making use of its nanomotion on the Z-axis and using an external motion on the barrier, this device can complete the local and full-range lateral sensitivity calibrations of the optical lever without modifying the actual AFM or the cantilevers.

9.
Rev Sci Instrum ; 79(3): 033708, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18377016

ABSTRACT

We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to +/-12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

SELECTION OF CITATIONS
SEARCH DETAIL
...