Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 13(4): 573-579, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28383801

ABSTRACT

Ecological risk assessments and risk management decisions are only as sound as the underlying information and processes to integrate them. It is important to develop transparent and reproducible procedures a priori to integrate often-heterogeneous evidence. Current weight-of-evidence (WoE) approaches for effects or hazard assessment tend to conflate aspects of the assessment of the quality of the data with the strength of the body of evidence as a whole. We take forward recent developments in the critical appraisal of the reliability and relevance of individual ecotoxicological studies as part of the effect or hazard assessment of prospective risk assessments and propose a streamlined WoE approach. The aim is to avoid overlap and double accounting of criteria used in reliability and relevance with that used in current WoE methods. The protection goals, problem formulation, and evaluation process need to be clarified at the outset. The data are first integrated according to lines of evidence (LoEs), typically mechanistic insights (e.g., cellular, subcellular, genomic), in vivo experiments, and higher-tiered field or observational studies. Data are then plotted on the basis of both relevance and reliability scores or categories. This graphical approach provides a means to visually assess and communicate the credibility (reliability and relevance of available individual studies), quantity, diversity, and consistency of the evidence. In addition, the external coherence of the body of evidence needs to be considered. The final step in the process is to derive an expression of the confidence in the conclusions of integrating the information considering these 5 aspects in the context of remaining uncertainties. We suggest that this streamlined approach to WoE for the effects or hazard characterization should facilitate reproducible and transparent assessments of data across different regulatory requirements. Integr Environ Assess Manag 2017;13:573-579. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Ecotoxicology , Environmental Policy , Environmental Pollutants/toxicity , Environmental Pollution/legislation & jurisprudence , Decision Making , Environmental Exposure , Environmental Pollutants/standards , Risk Assessment , Risk Management
2.
Environ Toxicol Chem ; 31(11): 2525-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22865792

ABSTRACT

Bisphenol A (BPA) is an intermediate used to produce epoxy resins and polycarbonate plastics. Although BPA degrades rapidly in the environment with aquatic half-lives from 0.5 to 6 d, it can be found in aquatic systems because of widespread use. To evaluate potential effects from chronic exposure, fathead minnows were exposed for 164 d to nominal concentrations of 1, 16, 64, 160, and 640 µg/L BPA. Population-level endpoints of survival, growth, and reproduction were assessed with supplemental endpoints (e.g., vitellogenin, gonad histology), including gonad cell type assessment and quantification. No statistically significant changes in growth, gonad weight, gonadosomatic index, or reproduction variables (e.g., number of eggs and spawns, hatchability) were observed; however, there was a significant impact on male survival at 640 µg/L. Vitellogenin increased in both sexes at 64 µg/L or higher. Gonad cell type frequencies were significantly different from controls at 160 µg/L or higher in males with a slight decrease in spermatocytes compared with less mature cell types, and at 640 µg/L in females with a slight decrease in early vitellogenic cells compared with less mature cells. The decrease in spermatocytes did not correspond to a decrease in the most mature sex cell type (spermatozoa) and did not impair male fertility, as hatchability was not impacted. Overall, marginal shifts in gametogenic cell maturation were not associated with any statistically significant effects on population-relevant reproductive endpoints (growth, fecundity, and hatchability) at any concentration tested.


Subject(s)
Benzhydryl Compounds/toxicity , Cyprinidae/physiology , Phenols/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Endpoint Determination , Environmental Exposure , Female , Gonads/metabolism , Gonads/pathology , Male , Toxicity Tests, Chronic , Vitellogenins/blood
3.
Ecotoxicol Environ Saf ; 72(5): 1392-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19327838

ABSTRACT

Bisphenol A (BPA, 4,4'-isopropylidine diphenol) is a commercially important chemical used primarily as an intermediate in the production of polycarbonate plastic and epoxy resins. Extensive effect data are currently available, including long-term studies with BPA on fish, amphibians, crustaceans, and mollusks. The aim of this study was to perform additional tests with a number of aquatic invertebrates and an aquatic plant. These studies include acute tests with the midge (Chironomus tentans) and the snail (Marisa cornuarietis), and chronic studies with rotifers (Brachionus calyciflorus), amphipods (Hyalella azteca), and plants (Lemna gibba). The effect data on different aquatic invertebrate and plant species presented in this paper correspond well with the effect and no-effect concentrations (NOECs) available from invertebrate studies in the published literature and are within the range found for other aquatic species tested with BPA.


Subject(s)
Araceae/drug effects , Invertebrates/drug effects , Phenols/toxicity , Toxicity Tests, Acute/methods , Toxicity Tests, Chronic/methods , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Araceae/growth & development , Benzhydryl Compounds , Chironomidae/drug effects , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Female , Invertebrates/growth & development , Lethal Dose 50 , Male , No-Observed-Adverse-Effect Level , Population Density , Rotifera/drug effects , Snails/drug effects
4.
Chemosphere ; 53(3): 223-35, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12919782

ABSTRACT

A number of currently used industrial chemicals are estrogenic, and therefore have potential to disrupt sexual differentiation in vertebrate wildlife during critical developmental windows. We assessed the effect of larval exposure to bisphenol A (BPA) on growth, development and sexual differentiation of the gonad in the African Clawed frog, Xenopus laevis. Larvae were maintained in flow-through conditions at 22 +/- 1 degrees C and exposed to BPA at mean measured concentrations of 0.83, 2.1, 9.5, 23.8, 100, and 497 microg/l, from developmental stages 43/45-66 (completion of metamorphosis). Each test concentration, plus dilution water control (DWC) and positive control (17beta-estradiol (E2), 2.7 microg/l) employed four replicate test vessels with 40 larvae per tank. Individual froglets were removed from test vessels upon reaching stage 66, and the study was terminated at 90 days. Froglets were dissected and sex was determined by inspection of gross gonadal morphology. Test concentrations of BPA had no effect on survival, growth, developmental stage distributions at exposure days 32 and 62, or mean time to completion of metamorphosis, compared to DWC. Analysis of post-metamorphic sex ratio, determined by gross gonadal morphology, indicated no significant deviations from expected (50:50) sex ratio, in DWC or any BPA test concentration. In contrast, exposure of larvae to (E2) resulted in feminisation, with sex ratio deviating significantly (31% male, replicates pooled). Exposure to BPA in the concentration range 0.83-497 microg/l in flow-through conditions had no observable effect on larval growth, development or sexual differentiation (as determined by gross gonadal morphology) in this study.


Subject(s)
Estrogens, Non-Steroidal/toxicity , Phenols/toxicity , Xenopus laevis/physiology , Animals , Benzhydryl Compounds , Gonads/growth & development , Larva/drug effects , Larva/growth & development , Metamorphosis, Biological/drug effects , Sex Differentiation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...