Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
iScience ; 27(6): 109813, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799578

ABSTRACT

As therapies, oncolytic viruses regress tumors and have the potential to induce antitumor immune responses that clear hard-to-treat and late-stage cancers. Despite this promise, clearance from the blood prevents treatment of internal solid tumors. To address this issue, we developed virus-delivering Salmonella (VDS) to carry oncolytic viruses into cancer cells. The VDS strain contains the PsseJ-lysE delivery circuit and has deletions in four homologous recombination genes (ΔrecB, ΔsbcB, ΔsbcCD, and ΔrecF) to preserve essential hairpins in the viral genome required for replication and infectivity. VDS delivered the genome for minute virus of mice (MVMp) to multiple cancers, including breast, pancreatic, and osteosarcoma. Viral delivery produced functional viral particles that are cytotoxic and infective to neighboring cells. The release of mature virions initiated new rounds of infection and amplified the infection. Using Salmonella for delivery will circumvent the limitations of oncolytic viruses and will provide a new therapy for many cancers.

2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673979

ABSTRACT

A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1ß; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1ß production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Immune Tolerance , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Female , Male , Immune Tolerance/drug effects , Middle Aged , Adult , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism
3.
J Phys Chem A ; 128(18): 3587-3595, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38640443

ABSTRACT

The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.

4.
Methods Mol Biol ; 2779: 125-143, 2024.
Article in English | MEDLINE | ID: mdl-38526785

ABSTRACT

Cell sorting is a technique commonly used in academic and biotechnology laboratories in order to separate out cells or particles of interest from heterogeneous populations. Cell sorters use the same principles as flow cytometry analyzers, but instead of cell populations passing to the waste of the instrument, they can be collected for further studies including DNA sequencing as well as other genomic, in vitro and in vivo experiments. This chapter aims to give an overview of cell sorting, the different types of cell sorters, details on how a cell sorter works, as well as protocols that are useful when embarking on a journey with cell sorting.


Subject(s)
Laboratories , Cell Separation/methods , Flow Cytometry/methods
5.
Sci Rep ; 14(1): 5974, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472267

ABSTRACT

Schistosomiasis is a major Neglected Tropical Disease, caused by the infection with blood flukes in the genus Schistosoma. To complete the life cycle, the parasite undergoes asexual and sexual reproduction within an intermediate snail host and a definitive mammalian host, respectively. The intra-molluscan phase provides a critical amplification step that ensures a successful transmission. However, the cellular and molecular mechanisms underlying the development of the intra-molluscan stages remain poorly understood. Here, single cell suspensions from S. mansoni mother sporocysts were produced and sequenced using the droplet-based 10X Genomics Chromium platform. Six cell clusters comprising two tegument, muscle, neuron, parenchyma and stem/germinal cell clusters were identified and validated by in situ hybridisation. Gene Ontology term analysis predicted key biological processes for each of the clusters, including three stem/germinal sub-clusters. Furthermore, putative transcription factors predicted for stem/germinal and tegument clusters may play key roles during parasite development and interaction with the intermediate host.


Subject(s)
Parasites , Schistosomiasis mansoni , Schistosomiasis , Animals , Gene Expression Profiling , Mammals/genetics , Mollusca/genetics , Parasites/genetics , Schistosoma mansoni/genetics , Schistosomiasis/parasitology , Schistosomiasis mansoni/parasitology
6.
Sci Rep ; 14(1): 7052, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528006

ABSTRACT

Cobalt is a critical resource in industrial economies for the manufacture of electric-vehicle batteries, alloys, magnets, and catalysts, but has acute supply-chain risks and poses a threat to the environment. Large-scale sequestration of cobalt in low-cost materials under mild conditions opens a path to cobalt recycling, recovery and environmental clean-up. We describe such sequestration of cobalt by a widely available commercial calcium silicate material containing the mineral xonotlite. Xonotlite rapidly and spontaneously takes up 40 percent of its weight of cobalt under ambient conditions of temperature and pressure and reduces dissolved cobalt concentrations to low parts per million. A new Sharp Front experimental design is used to obtain kinetic and chemical information. Sequestration occurs by a coupled dissolution-precipitation replacement mechanism. The cobalt silicate reaction product is largely amorphous but has phyllosilicate features.

7.
Life (Basel) ; 14(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398771

ABSTRACT

Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders.

8.
ACS Chem Biol ; 19(3): 696-706, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38385342

ABSTRACT

The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV ß-scaffold in signal transduction.


Subject(s)
Bacterial Proteins , Photoreceptors, Microbial , Bacterial Proteins/metabolism , Spectrum Analysis , Photoreceptors, Microbial/chemistry , Bacillus subtilis/metabolism , Flavin Mononucleotide/metabolism
9.
Obes Surg ; 34(3): 911-927, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191966

ABSTRACT

PURPOSE: Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS: A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS: After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION: Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.


Subject(s)
Dyslipidemias , Gastric Bypass , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Mice , Animals , Gastric Bypass/methods , Obesity, Morbid/surgery , Obesity/surgery , Obesity/metabolism , Diet, High-Fat
11.
Cytometry A ; 105(2): 88-111, 2024 02.
Article in English | MEDLINE | ID: mdl-37941128

ABSTRACT

The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories. This manuscript builds on the work of Barsky et al. 2016 published in Cytometry Part A and incorporates recent advancements in cytometric technology. A flow cytometer is a specialized piece of technology that require special care and consideration in its housing and operations. As with any scientific equipment, a thorough evaluation of the location, space requirements, auxiliary resources, and support is crucial for successful operation. This comprehensive resource has been written by past and present members of the International Society for Advancement of Cytometry (ISAC) Shared Resource Laboratory (SRL) Emerging Leaders Program https://isac-net.org/general/custom.asp?page=SRL-Emerging-Leaders with extensive expertise in managing flow cytometry SRLs from around the world in different settings including academia and industry. It is intended to assist in establishing a new flow cytometry SRL, re-purposing an existing space into such a facility, or adding a flow cytometer to an individual lab in academia or industry. This resource reviews the available cytometry technologies, the operational requirements, and best practices in SRL staffing and management.


Subject(s)
Laboratories , Software , Flow Cytometry
12.
Curr Probl Diagn Radiol ; 53(2): 192-200, 2024.
Article in English | MEDLINE | ID: mdl-37951726

ABSTRACT

Magnetic Resonance Imaging (MRI) is an important diagnostic scanning tool for the detection and monitoring of specific diseases and conditions. However, the equipment cost, maintenance and specialty training of the technologists make the examination expensive. Consequently, unnecessary scanner time caused by poor scheduling, repeated sequences, aborted sequences, scanner idleness, or capture of non-diagnostic or low-value sequences is an opportunity to reduce costs and increase efficiency. This paper analyzes data collected from log files on 29 scanners over several years. 'Wasted' time is defined and key performance indicators (KPIs) are identified. A decrease in exam duration results when actively modifying and monitoring the number of sequences that comprise the exam card for a protocol.


Subject(s)
Efficiency , Magnetic Resonance Imaging , Humans , Workflow , Magnetic Resonance Imaging/methods
13.
Bio Protoc ; 13(23): e4888, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38094252

ABSTRACT

The innate immune system can remember previous inflammatory insults, enabling long-term heightened responsiveness to secondary immune challenges in a process termed "trained immunity." Trained innate immune cells undergo metabolic and epigenetic remodelling and, upon a secondary challenge, provide enhanced protection with therapeutic potential. Trained immunity has largely been studied in innate immune cells in vitro or following ex vivo re-stimulation where the primary insult is typically injected into a mouse, adult zebrafish, or human. While highly informative, there is an opportunity to investigate trained immunity entirely in vivo within an unperturbed, intact whole organism. The exclusively innate immune response of larval zebrafish offers an attractive system to model trained immunity. Larval zebrafish have a functional innate immune system by 2 days post fertilisation (dpf) and are amenable to high-resolution, high-throughput analysis. This, combined with their optical transparency, conserved antibacterial responses, and availability of transgenic reporter lines, makes them an attractive alternative model to study trained immunity in vivo. We have devised a protocol where ß-glucan (one of the most widely used experimental triggers of trained immunity) is systemically delivered into larval zebrafish using microinjection to stimulate a trained-like phenotype. Following stimulation, larvae are assessed for changes in gene expression, which indicate the stimulatory effect of ß-glucan. This protocol describes a robust delivery method of one of the gold standard stimulators of trained immunity into a model organism that is highly amenable to several non-invasive downstream analyses. Key features • This protocol outlines the delivery of one of the most common experimental stimulators of trained immunity into larval zebrafish. • The protocol enables the assessment of a trained-like phenotype in vivo. • This protocol can be applied to transgenic or mutant zebrafish lines to investigate cells or genes of interest in response to ß-glucan stimulation.

15.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014354

ABSTRACT

Dopamine release in the nucleus accumbens has been hypothesized to signal reward prediction error, the difference between observed and predicted reward, suggesting a biological implementation for reinforcement learning. Rigorous tests of this hypothesis require assumptions about how the brain maps sensory signals to reward predictions, yet this mapping is still poorly understood. In particular, the mapping is non-trivial when sensory signals provide ambiguous information about the hidden state of the environment. Previous work using classical conditioning tasks has suggested that reward predictions are generated conditional on probabilistic beliefs about the hidden state, such that dopamine implicitly reflects these beliefs. Here we test this hypothesis in the context of an instrumental task (a two-armed bandit), where the hidden state switches repeatedly. We measured choice behavior and recorded dLight signals reflecting dopamine release in the nucleus accumbens core. Model comparison based on the behavioral data favored models that used Bayesian updating of probabilistic beliefs. These same models also quantitatively matched the dopamine measurements better than non-Bayesian alternatives. We conclude that probabilistic belief computation plays a fundamental role in instrumental performance and associated mesolimbic dopamine signaling.

16.
Cytometry A ; 103(12): 947-952, 2023 12.
Article in English | MEDLINE | ID: mdl-37800362

ABSTRACT

With the increase in the number of parameters that can be detected at the single-cell level using flow and mass cytometry, there has been a paradigm shift when handling and analyzing data sets. Cytometry Shared Resource Laboratories (SRLs) already take on the responsibility of ensuring users have resources and training in experimental design and operation of instruments to promote high-quality data acquisition. However, the role of SRLs downstream, during data handling and analysis, is not as well defined and agreed upon. Best practices dictate a central role for SRLs in this process as they are in a pivotal position to support research in this context, but key considerations about how to effectively fill this role need to be addressed. Two surveys and one workshop at CYTO 2022 in Philadelphia, PA, were performed to gain insight into what strategies SRLs are successfully employing to support high-dimensional data analysis and where SRLs and their users see limitations and long-term challenges in this area. Recommendations for high-dimensional data analysis support provided by SRLs will be offered and discussed.


Subject(s)
Laboratories , Research Design , Data Accuracy , Flow Cytometry/methods
17.
Front Immunol ; 14: 1228532, 2023.
Article in English | MEDLINE | ID: mdl-37868996

ABSTRACT

Introduction: Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. Methods: To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. Results: We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. Discussion: This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.


Subject(s)
CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Humans , Mice , Animals , Child , Ovalbumin , Mice, Inbred C57BL , Antigens, Neoplasm/metabolism , Vaccination , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Salmonella/genetics
18.
Sci Adv ; 9(36): eadf9904, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37672586

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) respond to infection by proliferating and generating in-demand neutrophils through a process called emergency granulopoiesis (EG). Recently, infection-induced changes in HSPCs have also been shown to underpin the longevity of trained immunity, where they generate innate immune cells with enhanced responses to subsequent microbial threats. Using larval zebrafish to live image neutrophils and HSPCs, we show that infection-experienced HSPCs generate neutrophils with enhanced bactericidal functions. Transcriptomic analysis of EG neutrophils uncovered a previously unknown function for mitochondrial reactive oxygen species in elevating neutrophil bactericidal activity. We also reveal that driving expression of zebrafish C/EBPß within infection-naïve HSPCs is sufficient to generate neutrophils with similarly enhanced bactericidal capacity. Our work suggests that this demand-adapted source of neutrophils contributes to trained immunity by providing enhanced protection toward subsequent infections. Manipulating demand-driven granulopoiesis may provide a therapeutic strategy to boost neutrophil function and treat infectious disease.


Subject(s)
Bacterial Infections , Hematopoietic Stem Cells , Trained Immunity , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/microbiology , Animals , Zebrafish , Larva/immunology , Larva/microbiology , Reactive Oxygen Species/metabolism , Bacterial Infections/immunology
19.
Br J Radiol ; 96(1150): 20221189, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37665247

ABSTRACT

OBJECTIVES: Propagation-based phase-contrast computed tomography (PB-CT) is a new imaging technique that exploits refractive and absorption properties of X-rays to enhance soft tissue contrast and improve image quality. This study compares image quality of PB-CT and absorption-based CT (AB-CT) for breast imaging while exploring X-ray energy and radiation dose. METHODS: Thirty-nine mastectomy samples were scanned at energy levels of 28-34keV using a flat panel detector at radiation dose levels of 4mGy and 2mGy. Image quality was assessed using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), spatial resolution (res) and visibility (vis). Statistical analysis was performed to compare PB-CT images against their corresponding AB-CT images scanned at 32keV and 4mGy. RESULTS: The PB-CT images at 4mGy, across nearly all energy levels, demonstrated superior image quality than AB-CT images at the same dose. At some energy levels, the 2mGy PB-CT images also showed better image quality in terms of CNR/Res and vis compared to the 4mGy AB-CT images. At both investigated doses, SNR and SNR/res were found to have a statistically significant difference across all energy levels. The difference in vis was statistically significant at some energy levels. CONCLUSION: This study demonstrates superior image quality of PB-CT over AB-CT, with X-ray energy playing a crucial role in determining image quality parameters. ADVANCES IN KNOWLEDGE: Our findings reveal that standard dose PB-CT outperforms standard dose AB-CT across all image quality metrics. Additionally, we demonstrate that low dose PB-CT can produce superior images compared to standard dose AB-CT in terms of CNR/Res and vis.


Subject(s)
Breast Neoplasms , Humans , Female , X-Rays , Breast Neoplasms/diagnostic imaging , Mastectomy , Breast/diagnostic imaging , Radiation Dosage , Signal-To-Noise Ratio , Radiographic Image Interpretation, Computer-Assisted/methods
20.
J Phys Chem Lett ; 14(36): 8000-8008, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37650733

ABSTRACT

Gating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states. The 21B2u state is accessed through single-photon absorption at 250 nm, while the optically dark 21Ag state is excited via the 11B3u state. Population of either state results in subpicosecond relaxation to the 11B3u state, and we quantify 21Ag and 21B2u state lifetimes of 340 and 530 fs, respectively. These lifetimes are significantly longer than the singlet fission time constant from the perylene 21B2u state, suggesting that the higher electronic states of perylene may be useful for gating logical operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...