Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Parasitol ; 33(12): 1409-18, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14527523

ABSTRACT

Acute phase proteins (APP) are synthesised in the liver in response to the systemic presence of high levels of pro-inflammatory cytokines. Bacteria are considered to be strong inducers of APP whereas viruses are weak or non-inducers of APP. Very few reports have been published on APP induction by parasites. Here, we report that the tick-borne protozoan parasite of cattle, Theileria annulata, induced an atypical acute phase response in cattle. Following experimental infection, serum amyloid A (SAA) appeared first, followed by a rise in alpha(1) acid glycoprotein (alpha(1)AGP) in all animals, whereas haptoglobin, which is a major APP in cattle, only appeared in some of the animals, and generally at a low level. All three APP only became elevated around or after the appearance of schizonts in draining lymph nodes and after the first observed temperature rise. Increased alpha(1)AGP levels coincided with the appearance of piroplasms. The production of SAA and alpha(1)AGP correlated strongly with each other, and also with some clinical measures of disease severity including the time to fever, development of leucopaenia, parasitaemia and mortality. These results are consistent with the hypothesis that T. annulata causes severe pathology in susceptible cattle by inducing high levels of pro-inflammatory cytokines.


Subject(s)
Acute-Phase Proteins/analysis , Theileria annulata , Theileriasis/blood , Animals , Apolipoproteins/analysis , Cattle , Haptoglobins/analysis , Orosomucoid/analysis , Serum Amyloid A Protein/analysis
2.
Parasitol Res ; 88(6): 522-34, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12107474

ABSTRACT

There is increasing evidence that immune mechanisms are involved in the pathogenesis of many parasitic infections, including infections with the tick-borne protozoan Theileria annulata. The initial stages of tropical theileriosis are characterised by the induction of a non-specific lymphoproliferation by schizont-infected cells which is believed to disrupt antigen recognition and interfere with protective immune responses. This study examined the possibility that cattle do not always succumb to infection because macrophages suppress this non-specific lymphoproliferation. The results provide evidence that lymphoproliferation in cattle may be controlled by two types of suppressor macrophages. The first type occurs in infected cattle and acts via a feedback loop well documented in other parasitic infections. This loop involves macrophages, apparently activated by high levels of gamma interferon produced by proliferating lymphocytes, which suppress lymphocyte proliferation via a prostaglandin-mediated pathway. The properties of a suppressor activity seen in immunised and challenged animals suggested that cattle also possess a type of novel suppressor macrophage recently described in filarial infections. This second type of suppressor macrophage does not seem to act via prostaglandin; its activity appeared to be linked to a suppressor epitope on the sporozoite antigen SPAG-1. Differences in the nature of the schizont-infected cells of the Friesian and Sahiwal calves used in one section of this work, in the in vitro and in vivo lymphoproliferative responses of the two groups of calves and in the behaviour of their suppressor macrophages suggested several reasons why the outcome of Theileria infections differed in the two cattle breeds. This study has extended our knowledge of the pluripotential activities of macrophages in T. annulata infections to include immunosuppression as well as anti-parasite responses and confirmed the view that the outcome of infection with T. annulata, as with many parasitic infections, depends upon the final balance of the protective and pathological properties of the immune system.


Subject(s)
Cattle Diseases/immunology , Immune Tolerance , Macrophages/immunology , Theileria annulata/pathogenicity , Theileriasis/immunology , Animals , Cattle , Cattle Diseases/classification , Cell Line , Cells, Cultured , Host-Parasite Interactions , Immunization, Secondary , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Lymphocytes/immunology , Theileria annulata/immunology , Theileriasis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...