Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 709: 134508, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31927425

ABSTRACT

Husbandry trace gases that have climate change implications such as carbon dioxide (CO2), methane (CH4) and ammonia (NH3) can be quantified through remote sensing; however, many husbandry gases with health implications such as hydrogen sulfide (H2S), cannot. This pilot study demonstrates an approach to derive H2S concentrations by coupling in situ and remote sensing data. Using AMOG (AutoMObile trace Gas) Surveyor, a mobile air quality and meteorology laboratory, we measured in situ concentrations of CH4, CO2, NH3, H2S, and wind at a southern California university research dairy. Emissions were 0.13, 1.93, 0.022 and 0.0064 Gg yr-1; emission factors (EF) were 422, 6333, 74, and 21 kg cow-1 yr-1, respectively, for the 306 head herd. Contributing to these strong EF were spillway emissions from a grate between the main cowshed and the waste lagoon identified in airborne remote sensing data acquired by the hyperspectral thermal infrared imager, Mako. NH3 emissions from the Chino Dairy Complex, also in southern California, were calculated from Infrared Atmospheric Sounding Interferometer (IASI) satellite data for 2008-2017 using average morning winds, yielding a flushing time of 2.7 h, and 8.9 Gg yr-1. The ratio of EF(H2S) to EF(NH3) for the research dairy from AMOG data were applied to IASI NH3 emissions to derive H2S exposure concentration maps for the Chino area, which ranged to 10-30 ppb H2S for many populated areas. Combining remote sensing with in situ concentrations of multiple emitted gases can allow derivation of emissions at the sub-facility, facility, and larger scales, providing spatial and temporal coverage that can translate into exposure estimates for use in epidemiology studies and regulation development. Furthermore, with high fidelity information at the sub-facility level we can identify best practices and opportunities to sustainably and holistically reduce husbandry emissions.

2.
Environ Pollut ; 242(Pt B): 2111-2134, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30005944

ABSTRACT

Mobile in situ concentration and meteorology data were collected for the Chino Dairy Complex in the Los Angeles Basin by AMOG (AutoMObile trace Gas) Surveyor on 25 June 2015 to characterize husbandry emissions in the near and far field in convoy mode with MISTIR (Mobile Infrared Sensor for Tactical Incident Response), a mobile upwards-looking, column remote sensing spectrometer. MISTIR reference flux validated AMOG plume inversions at different information levels including multiple gases, GoogleEarth imagery, and airborne trace gas remote sensing data. Long-term (9-yr.) Infrared Atmospheric Sounding Interferometer satellite data provided spatial and trace gas temporal context. For the Chino dairies, MISTIR-AMOG ammonia (NH3) agreement was within 5% (15.7 versus 14.9 Gg yr-1, respectively) using all information. Methane (CH4) emissions were 30 Gg yr-1 for a 45,200 herd size, indicating that Chino emission factors are greater than previously reported. Single dairy inversions were much less successful. AMOG-MISTIR agreement was 57% due to wind heterogeneity from downwind structures in these near-field measurements and emissions unsteadiness. AMOG CH4, NH3, and CO2 emissions were 91, 209, and 8200 Mg yr-1, implying 2480, 1870, and 1720 head using published emission factors. Plumes fingerprinting identified likely sources including manure storage, cowsheds, and a structure with likely natural gas combustion. NH3 downwind of Chino showed a seasonal variation of a factor of ten, three times larger than literature suggests. Chino husbandry practices and trends in herd size and production were reviewed and unlikely to add seasonality. Higher emission seasonality was proposed as legacy soil emissions, the results of a century of husbandry, supported by airborne remote sensing data showing widespread emissions from neighborhoods that were dairies 15 years prior, and AMOG and MISTIR observations. Seasonal variations provide insights into the implications of global climate change and must be considered when comparing surveys from different seasons.


Subject(s)
Air Pollutants/analysis , Dairying , Environmental Monitoring , Remote Sensing Technology , Ammonia/analysis , Animal Husbandry , Climate Change , Gases , Los Angeles , Manure/analysis , Methane/analysis , Natural Gas , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...