Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(44): 16336-16342, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34734620

ABSTRACT

Reaction of bis(pinacolato)diboron with (6-Dipp)CuOtBu generates a ring-expanded N-heterocyclic carbene supported copper(I) boryl, (6-Dipp)CuBpin. This compound showed remarkable stability and was characterised by NMR spectroscopy and X-ray crystallography. (6-Dipp)CuBpin readily dechalcogenated a range of heterocumulenes such as CO2, isocyanates and isothiocyanates to yield (6-Dipp)CuXBpin (X = O, S). In the case of CO2 catalytic reduction to CO is viable in the presence of excess bis(pinacolato)diboron. In contrast, in the case of iso(thio)cyanates, the isocyanide byproduct of dechalcogenation reacted with (6-Dipp)CuBpin to generate a copper(I) borylimidinate, (6-Dipp)CuC(NR)Bpin, which went on to react with heterocumulenes. This off-cycle reactivity gives selective access to a range of novel boron-containing heterocycles bonded to copper, but precludes catalytic reactivity.

2.
Chem Commun (Camb) ; 56(87): 13359-13362, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33030162

ABSTRACT

A range of N-heterocyclic carbene-supported copper diphenylphosphides (NHC = IPr, 6-Dipp, SIMes and 6-Mes) were synthesised. These include the first reports of ring-expanded NHC-copper(i) phosphides. The compounds were characterised by NMR spectroscopy and X-ray crystallography. Reaction of (6-Dipp)CuPPh2 with isocyanates, isothiocyanates and carbon disulfide results in the insertion of the heterocumulene into the Cu-P bond. The NHC-copper phosphides were found to be the most selective catalysts yet reported for the hydrophosphination of isocyanates. They provide access to a broad range of phosphinocarboxamides in excellent conversion and good yield.

3.
Angew Chem Int Ed Engl ; 57(38): 12478-12482, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30027571

ABSTRACT

There has been growing interest in performing organocatalysis within a supramolecular system as a means of controlling reaction reactivity and stereoselectivity. Here, a protein is used as a host for iminium catalysis. A pyrrolidine moiety is covalently linked to biotin and introduced to the protein host streptavidin for organocatalytic activity. Whereas in traditional systems stereoselectivity is largely controlled by the substituents added to the organocatalyst, enantiomeric enrichment by the reported supramolecular system is completely controlled by the host. Also, the yield of the model reaction increases over 10-fold when streptavidin is included. A 1.1 Šcrystal structure of the protein-catalyst complex and molecular simulations of a key intermediate reveal the chiral scaffold surrounding the organocatalytic reaction site. This work illustrates that proteins can be an excellent supramolecular host for driving stereoselective secondary amine organocatalysis.


Subject(s)
Imines/chemistry , Streptavidin/chemistry , Binding Sites , Biotin/chemistry , Biotin/metabolism , Biotinylation , Catalysis , Gas Chromatography-Mass Spectrometry , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Stereoisomerism , Streptavidin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...