Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1000: 293-302, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29289322

ABSTRACT

The fundamental relationships between the structure and chemistry of latex nanoparticles synthesized by reversible addition fragmentation chain transfer (RAFT) controlled living polymerization and their subsequent performance as pseudostationary phases (PSP) are reported in this paper. RAFT enables the rational optimization of latex nanoparticle pseudostationary phases and control of the behavior of the PSP. Nanoparticles comprised of amphiphilic diblock copolymers of 2-acrylamido-2-methylpropane sulfonic acid-derived ionic/hydrophilic blocks and butyl- ethyl- or methyl-acrylate-derived hydrophobic blocks were synthesized in two sizes. The mobility, methylene selectivity, and efficiency of each of the six pseudostationary phases are reported, as well as the relationship between monomer quantity and NP size. Linear solvation energy relationships are reported and compared to SDS micelles and previous nanoparticle pseudostationary phases. The solvation characteristics and selectivity of nanoparticle pseudostationary phases is shown to be affected primarily by the structure of the hydrophobic copolymer block. Butyl acrylate nanoparticles 17 nm in diameter are found to provide the best overall separation performance with over 500 thousand theoretical plates generated in 6 min separations.

2.
ACS Nano ; 11(8): 8401-8412, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28759200

ABSTRACT

Solid-state chemical transformations at the nanoscale can be a powerful tool for achieving compositional complexity in nanomaterials. It is desirable to understand the mechanisms of such reactions and characterize the local-level composition of the resulting materials. Here, we examine how reaction temperature controls the elemental distribution in (Ga1-xZnx)(N1-xOx) nanocrystals (NCs) synthesized via the solid-state nitridation of a mixture of nanoscale ZnO and ZnGa2O4 NCs. (Ga1-xZnx)(N1-xOx) is a visible-light absorbing semiconductor that is of interest for applications in solar photochemistry. We couple elemental mapping using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDS) with colocation analysis to study the elemental distribution and the degree of homogeneity in the (Ga1-xZnx)(N1-xOx) samples synthesized at temperatures ranging from 650 to 900 °C with varying ensemble compositions (i.e., x values). Over this range of temperatures, the elemental distribution ranges from highly heterogeneous at 650 °C, consisting of a mixture of larger particles with Ga and N enrichment near the surface and very small NCs, to uniform particles with evenly distributed constituent elements for most compositions at 800 °C and above. We propose a mechanism for the formation of the (Ga1-xZnx)(N1-xOx) NCs in the solid state that involves phase transformation of cubic spinel ZnGa2O4 to wurtzite (Ga1-xZnx)(N1-xOx) and diffusion of the elements along with nitrogen incorporation. The temperature-dependence of nitrogen incorporation, bulk diffusion, and vacancy-assisted diffusion processes determines the elemental distribution at each synthesis temperature. Finally, we discuss how the visible band gap of (Ga1-xZnx)(N1-xOx) NCs varies with composition and elemental distribution.

3.
Electrophoresis ; 35(5): 728-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24302072

ABSTRACT

The performance and solvation characteristics of two novel latex nanoparticle (NP) pseudo-stationary phases (PSPs) for EKC are determined and compared to those of previously reported micellar, polymeric, and NP materials. The new NPs have shells composed of strongly acidic poly(AMPS) as opposed to the poly(acrylic acid) shell of the prior NP, and have varied hydrophobic core chemistry of either poly(butyl acrylate) or poly(ethyl acrylate). The NPs poly(AMPS) shell shows only minor changes in mobility and selectivity between pH 4.9 and 9.4, allowing adjustment of pH to influence and optimize separation performance. All of the NP phases have significantly different solvation characteristics and selectivity relative to SDS micelles. The selectivity and solvent character are similar for NPs with poly(butyl acrylate) cores and different shells, but vary significantly between NPs with poly(butyl acrylate) versus poly(ethyl acrylate) cores. NPs with poly(butyl acrylate) cores are among the least cohesive PSPs reported to date, while the NP with poly(ethyl acrylate) core is among the most cohesive. The results demonstrate that PSPs with unique selectivity can be generated by altering the chemistry of the hydrophobic core.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Nanoparticles/chemistry , Acrylamides/chemistry , Acrylates , Alkanesulfonates/chemistry , Buffers , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanoshells , Polymerization , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...