Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 14(3): 191-202, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12639300

ABSTRACT

Clinical applications of gene therapy require advances in gene delivery systems. Although numerous clinical trials are already underway, the ultimate success of gene therapies will depend on gene transfer vectors that facilitate the expression of a specific gene at therapeutic levels in the desired cell populations without eliciting cytotoxicity. In clinical applications for which transient expression is desirable, mRNA delivery is of particular interest. We have shown cationic lipid-mediated mRNA delivery to be feasible, efficient, and reproducible in vitro. mRNA delivery to the cerebrospinal fluid (CSF) in vivo would provide a means of vector distribution throughout the central nervous system (CNS). This study examined the functional integrity and protection from degradation of mRNA/cationic complexes (lipoplexes) in human cerebrospinal fluid (hCSF) in vitro and expression of these lipoplexes in vivo. Results obtained from gel electrophoresis indicate that cationic lipids protect mRNA transcripts from RNases in hCSF for at least 4 hr. This is in contrast to the total disappearance of nonlipid-complexed mRNA in less than 5 min. We confirmed the importance of RNase activity by incubating mRNA transcripts encoding luciferase or green fluorescent protein (GFP) in hCSF to which RNase inhibitors had been added. After incubation, these solutions were used to transfect Chinese hamster ovary (CHO) cells in vitro. Next, assays for both GFP and luciferase were used to demonstrate functional integrity and translation of the mRNA transcripts. Finally, we delivered in vitro transcribed mRNA vectors encoding for Hsp70 and luciferase to the lateral ventricle of the rat in a series of preliminary in vivo experiments. Initial immunohistochemistry analysis demonstrates that the distribution, uptake, and expression of reporter sequences using lipid-mediated mRNA vector delivery is extensive, as we earlier reported using similar methods with DNA vectors but that the expression may be less intense. Expression was noted in coronal sections throughout the rat brain, confirming the potential for lipid-mediated mRNA delivery to the CNS. These findings confirm that complexing mRNA with cationic lipid before exposure to CSF confers protection against RNase activity, facilitating distribution, cellular uptake, and expression of mRNA delivered into the CNS.


Subject(s)
Central Nervous System/metabolism , Gene Transfer Techniques , Lipid Metabolism , RNA, Messenger/metabolism , Animals , CHO Cells , Cricetinae , Genes, Reporter , Humans , Lipids/cerebrospinal fluid , RNA, Messenger/cerebrospinal fluid , RNA, Messenger/isolation & purification , Rats , Transfection/methods
2.
Lab Invest ; 83(2): 207-25, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12594236

ABSTRACT

Smoking is associated with aberrant cutaneous tissue remodeling, such as precocious skin aging and impaired wound healing. The mechanism is not fully understood. Dermal fibroblasts (DF) are the primary cellular component of the dermis and may provide a target for pathobiologic effects of tobacco products. The purpose of this study was to characterize a mechanism of nicotine (Nic) effects on the growth and tissue remodeling function of DF. We hypothesized that the effects of Nic on DF result from its binding to specific nicotinic acetylcholine receptors (nAChRs) expressed by these cells and that downstream signaling from the receptors alters normal cell functioning, leading to changes in skin homeostasis. Using RT-PCR and Western blotting, we found that a 24-hour exposure of human DF to 10 micro M Nic causes a 1.9- to 28-fold increase of the mRNA and protein levels of the cell cycle regulators p21, cyclin D1, Ki-67, and PCNA and a 1.7- to 2-fold increase of the apoptosis regulators Bcl-2 and caspase 3. Nic exposure also up-regulated expression of the dermal matrix proteins collagen type Ialpha1 and elastin as well as matrix metalloproteinase-1. Mecamylamine (Mec), the specific antagonist of nAChRs, abolished Nic-induced alterations, indicating that they resulted from a pharmacologic stimulation of nAChRs expressed by DF. To establish the relevance of these findings to a specific nicotinergic pathway, we studied human DF transfected with anti-alpha3 antisense oligonucleotides and murine DF from alpha3 nAChR knockout mice. In both cases, lack of alpha3 was associated with alterations in fibroblast growth and function that were opposite to those observed in DF treated with Nic, suggesting that the nicotinic effects on DF were mostly mediated by alpha3 nAChR. In addition to alpha3, the nAChR subunits detected in human DF were alpha5, alpha7, beta2, and beta4. The exposure of DF to Nic altered the relative amounts of each of these subunits, leading to reciprocal changes in [(3)H]epibatidine-binding kinetics. Thus, some of the pathobiologic effects of tobacco products on extracellular matrix turnover in the skin may stem from Nic-induced alterations in the physiologic control of the unfolding of the genetically determined program of growth and the tissue remodeling function of DF as well as alterations in the structure and function of fibroblast nAChRs.


Subject(s)
Fibroblasts/metabolism , Nicotine/metabolism , Receptors, Nicotinic/metabolism , Animals , Animals, Newborn , Blotting, Western , Caspase 3 , Caspases/genetics , Caspases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dermis/drug effects , Dermis/metabolism , Dermis/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Infant, Newborn , Male , Mecamylamine/pharmacology , Mice , Mice, Knockout , Nicotine/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...