Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645163

ABSTRACT

The enteric nervous system (ENS) is contained within two layers of the gut wall and is made up of neurons, immune cells, and enteric glia cells (EGCs) that regulate gastrointestinal (GI) function. EGCs in both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) change in response to inflammation, referred to as reactive gliosis. Whether EGCs restricted to a specific layer or region within the GI tract alone can influence intestinal immune response is unknown. Using bulk RNA-sequencing and in situ hybridization, we identify G-protein coupled receptor Gpr37 , as a gene expressed only in EGCs of the myenteric plexus, one of the two layers of the ENS. We show that Gpr37 contributes to key components of LPS-induced reactive gliosis including activation of NF-kB and IFN-y signaling and response genes, lymphocyte recruitment, and inflammation-induced GI dysmotility. Targeting Gpr37 in EGCs presents a potential avenue for modifying inflammatory processes in the ENS.

2.
Glia ; 71(8): 1921-1946, 2023 08.
Article in English | MEDLINE | ID: mdl-37029775

ABSTRACT

Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.


Subject(s)
Astrocytes , Receptors, G-Protein-Coupled , Humans , Mice , Animals , Astrocytes/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/metabolism
3.
J Biol Chem ; 298(12): 102685, 2022 12.
Article in English | MEDLINE | ID: mdl-36370845

ABSTRACT

Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity. To shed light on this subject, we studied G protein-dependent signaling by B1 in the absence and presence of coexpression with the PS flippase ATP11A in human embryonic kidney 293T cells. ATP11A expression reduced the amount of PS exposed extracellularly and also strikingly reduced the signaling activity of coexpressed full-length B1 but not a truncated version of the receptor lacking the thrombospondin repeats. Further experiments with an inactive mutant of ATP11A showed that the PS flippase function of ATP11A was required for modulation of B1 signaling. In coimmunoprecipitation experiments, we made the surprising finding that ATP11A not only modulates B1 signaling but also forms complexes with B1. Parallel studies in which PS in the outer leaflet was reduced by an independent method, deletion of the gene encoding the endogenous lipid scramblase anoctamin 6 (ANO6), revealed that this manipulation also markedly reduced B1 signaling. These findings demonstrate that B1 signaling is modulated by PS exposure and suggest a model in which B1 serves as a PS sensor at synapses and in other cellular contexts.


Subject(s)
Phosphatidylserines , Signal Transduction , Humans , Phosphatidylserines/genetics , Phosphatidylserines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Thrombospondins/metabolism , HEK293 Cells
4.
Physiol Rev ; 102(4): 1587-1624, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35468004

ABSTRACT

Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Cell Adhesion , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism
5.
Exp Neurol ; 351: 113994, 2022 05.
Article in English | MEDLINE | ID: mdl-35114205

ABSTRACT

The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.


Subject(s)
Angiogenic Proteins/metabolism , Receptors, G-Protein-Coupled , Angiogenic Proteins/genetics , Animals , Brain/metabolism , Hippocampus/metabolism , Mice , Receptors, G-Protein-Coupled/genetics , Seizures/genetics , Seizures/metabolism
6.
Exp Neurol ; 342: 113719, 2021 08.
Article in English | MEDLINE | ID: mdl-33839144

ABSTRACT

The generation of neural stem and progenitor cells following injury is critical for the function of the central nervous system, but the molecular mechanisms modulating this response remain largely unknown. We have previously identified the G protein-coupled receptor 37 (GPR37) as a modulator of ischemic damage in a mouse model of stroke. Here we demonstrate that GPR37 functions as a critical negative regulator of progenitor cell dynamics and gliosis following ischemic injury. In the central nervous system, GPR37 is enriched in mature oligodendrocytes, but following injury we have found that its expression is dramatically increased within a population of Sox2-positive progenitor cells. Moreover, the genetic deletion of GPR37 did not alter the number of mature oligodendrocytes following injury but did markedly increase the number of both progenitor cells and injury-induced Olig2-expressing glia. Alterations in the glial environment were further evidenced by the decreased activation of oligodendrocyte precursor cells. These data reveal that GPR37 regulates the response of progenitor cells to ischemic injury and provides new perspectives into the potential for manipulating endogenous progenitor cells following stroke.


Subject(s)
Brain Ischemia/metabolism , Disease Models, Animal , Ischemic Stroke/metabolism , Receptors, G-Protein-Coupled/deficiency , Stem Cells/metabolism , Animals , Brain Ischemia/pathology , Brain Ischemia/prevention & control , Ischemic Stroke/pathology , Ischemic Stroke/prevention & control , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Stem Cells/pathology
7.
J Proteome Res ; 19(2): 744-755, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31903766

ABSTRACT

GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.


Subject(s)
Proteomics , Receptors, G-Protein-Coupled , Animals , Brain/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
8.
FASEB J ; 33(10): 10680-10691, 2019 10.
Article in English | MEDLINE | ID: mdl-31268736

ABSTRACT

GPCR 37 (GPR37) is a GPCR expressed in the CNS; its physiological and pathophysiological functions are largely unknown. We tested the role of GPR37 in the ischemic brain of GPR37 knockout (KO) mice, exploring the idea that GPR37 might be protective against ischemic damage. In an ischemic stroke model, GPR37 KO mice exhibited increased infarction and cell death compared with wild-type (WT) mice, measured by 2,3,5-triphenyl-2H-tetrazolium chloride and TUNEL staining 24 h after stroke. Moreover, more severe functional deficits were detected in GPR37 KO mice in the adhesive-removal and corner tests. In the peri-infarct region of GPR37 KO mice, there was significantly more apoptotic and autophagic cell death accompanied by caspase-3 activation and attenuated mechanistic target of rapamycin signaling. GPR37 deletion attenuated astrocyte activation and astrogliosis compared with WT stroke controls 24-72 h after stroke. Immunohistochemical staining showed more ionized calcium-binding adapter molecule 1-positive cells in the ischemic cortex of GPR37 KO mice, and RT-PCR identified an enrichment of M1-type microglia or macrophage markers in the GPR37 KO ischemic cortex. Western blotting demonstrated higher levels of inflammatory factors IL-1ß, IL-6, monocyte chemoattractant protein, and macrophage inflammatory protein-1α in GPR37-KO mice after ischemia. Thus, GPR37 plays a multifaceted role after stroke, suggesting a novel target for stroke therapy.-McCrary, M. R., Jiang, M. Q., Giddens, M. M., Zhang, J. Y., Owino, S., Wei, Z. Z., Zhong, W., Gu, X., Xin, H., Hall, R. A., Wei, L., Yu, S. P. Protective effects of GPR37 via regulation of inflammation and multiple cell death pathways after ischemic stroke in mice.


Subject(s)
Brain Ischemia/physiopathology , Cell Death/physiology , Receptors, G-Protein-Coupled/physiology , Stroke/physiopathology , Animals , Apoptosis , Autophagy , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Caspase 3/metabolism , Disease Models, Animal , Inflammation/pathology , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Sensorimotor Cortex/physiopathology , Signal Transduction , Stroke/pathology , TOR Serine-Threonine Kinases/metabolism
9.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Article in English | MEDLINE | ID: mdl-31168816

ABSTRACT

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Humans , Receptors, G-Protein-Coupled/chemistry
10.
Eur J Neurosci ; 50(5): 2801-2813, 2019 09.
Article in English | MEDLINE | ID: mdl-31063250

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) are extensively used to modulate neuronal activity in rodents, but their use in primates remains limited. An essential need that remains is the demonstration that DREADDs are efficiently expressed on the plasma membrane of primate neurons. To address this issue, electron microscopy immunogold was used to determine the subcellular localization of the AAV vector-induced DREADDs hM4Di and hM3Dq fused to different tags in various brain areas of rhesus monkeys and mice. When hM4Di was fused to mCherry, the immunogold labelling was mostly confined to the intracellular space, and poorly expressed at the plasma membrane in monkey dendrites. In contrast, the hM4Di-mCherry labelling was mostly localized to the dendritic plasma membrane in mouse neurons, suggesting species differences in the plasma membrane expression of these exogenous proteins. The lack of hM4Di plasma membrane expression may limit the functional effects of systemic administration of DREADD-actuators in monkey neurons. Removing the mCherry and fusing of hM4Di with the haemagglutinin (HA) tag resulted in strong neuronal plasma membrane immunogold labelling in both monkeys and mice neurons. Finally, hM3Dq-mCherry was expressed mostly at the plasma membrane in monkey neurons, indicating that the fusion of mCherry with hM3Dq does not hamper membrane incorporation of this specific DREADD. Our results suggest that the pattern of ultrastructural expression of DREADDs in monkey neurons depends on the DREADD/tag combination. Therefore, a preliminary characterization of plasma membrane expression of specific DREADD/tag combinations is recommended when using chemogenetic approaches in primates.


Subject(s)
Brain/metabolism , Cell Membrane/metabolism , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Dendrites/metabolism , Female , Macaca mulatta , Male , Mice
11.
Annu Rev Pharmacol Toxicol ; 58: 429-449, 2018 01 06.
Article in English | MEDLINE | ID: mdl-28968187

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Animals , Drug Delivery Systems/methods , Humans , Protein Binding/drug effects , Signal Transduction/drug effects
12.
Sci Rep ; 7(1): 11771, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924170

ABSTRACT

Traumatic brain injury (TBI) increases the risk of Alzheimer's disease (AD). Calpain activation and tau hyperphosphorylation have been implicated in both TBI and AD. However, the link between calpain and tau phosphorylation has not been fully identified. We recently discovered that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity and neuronal survival/death, which may be related to their different C-terminal PDZ binding motifs. Here, we identify the tyrosine phosphatase PTPN13 as a key PDZ binding partner of calpain-2. PTPN13 is cleaved by calpain-2, which inactivates its phosphatase activity and generates stable breakdown products (P13BPs). We also found that PTPN13 dephosphorylates and inhibits c-Abl. Following TBI, calpain-2 activation cleaved PTPN13, activated c-Abl and triggered tau tyrosine phosphorylation. The activation of this pathway was responsible for the accumulation of tau oligomers after TBI, as post-TBI injection of a calpain-2 selective inhibitor inhibited c-Abl activation and tau oligomer accumulation. Thus, the calpain-2-PTPN13-c-Abl pathway provides a direct link between calpain-2 activation and abnormal tau aggregation, which may promote tangle formation and accelerate the development of AD pathology after repeated concussions or TBI. This study suggests that P13BPs could be potential biomarkers to diagnose mTBI or AD.


Subject(s)
Brain Injuries, Traumatic/metabolism , Calpain/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 13/metabolism , tau Proteins/metabolism , Animals , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Calpain/genetics , Mice , Mice, Knockout , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , Tyrosine/genetics , Tyrosine/metabolism , tau Proteins/genetics
13.
Hum Mutat ; 38(12): 1751-1760, 2017 12.
Article in English | MEDLINE | ID: mdl-28891236

ABSTRACT

Mutations in G protein-coupled receptors (GPCRs) that increase constitutive signaling activity can cause human disease. A de novo C-terminal mutation (R1465W) in the adhesion GPCR BAI2 (also known as ADGRB2) was identified in a patient suffering from progressive spastic paraparesis and other neurological symptoms. In vitro studies revealed that this mutation strongly increases the constitutive signaling activity of an N-terminally cleaved form of BAI2, which represents the activated form of the receptor. Further studies dissecting the mechanism(s) underling this effect revealed that wild-type BAI2 primarily couples to Gαz , with the R1465W mutation conferring increased coupling to Gαi . The R1465W mutation also increases the total and surface expression of BAI2. The mutation has no effect on receptor binding to ß-arrestins, but does perturb binding to the endocytic protein endophilin A1, identified here as a novel interacting partner for BAI2. These studies provide new insights into the signaling capabilities of the adhesion GPCR BAI2/ADGRB2 and shed light on how an apparent gain-of-function mutation to the receptor's C-terminus may lead to human disease.


Subject(s)
Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Cell Line, Tumor , Female , Genes, Reporter , Humans , Middle Aged , Models, Biological , Mutation , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Transport , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/genetics , beta-Arrestins/metabolism
14.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688853

ABSTRACT

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Subject(s)
Genetic Predisposition to Disease , Myoclonic Epilepsies, Progressive/metabolism , Receptors, G-Protein-Coupled/deficiency , Seizures/metabolism , Adolescent , Animals , Brain/physiopathology , Child , Female , Genetic Variation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoclonic Epilepsies, Progressive/genetics , NIH 3T3 Cells , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/genetics , Young Adult
15.
Neuroscience ; 358: 49-57, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28642167

ABSTRACT

GPR37 is an orphan G protein-coupled receptor that is predominantly expressed in the brain and found at particularly high levels in oligodendrocytes. GPR37 has been shown to exert effects on oligodendrocyte differentiation and myelination during development, but the molecular basis of these actions is incompletely understood and moreover nothing is known about the potential role(s) of this receptor under demyelinating conditions. To shed light on the fundamental biology of GPR37, we performed proteomic studies comparing protein expression levels in the brains of mice lacking GPR37 and its close relative GPR37-like 1 (GPR37L1). These studies revealed that one of the proteins most sharply decreased in the brains of Gpr37/Gpr37L1 double knockout mice is the myelin-associated glycoprotein MAG. Follow-up Western blot studies confirmed this finding and demonstrated that genetic deletion of Gpr37, but not Gpr37L1, results in strikingly decreased brain expression of MAG. Further in vitro studies demonstrated that GPR37 and MAG form a complex when expressed together in cells. As loss of MAG has previously been shown to result in increased susceptibility to brain insults, we additionally assessed Gpr37-knockout (Gpr37-/-) vs. wild-type mice in the cuprizone model of demyelination. These studies revealed that Gpr37-/- mice exhibit dramatically increased loss of myelin in response to cuprizone, yet do not show any increased loss of oligodendrocyte precursor cells or mature oligodendrocytes. These findings reveal that loss of GPR37 alters oligodendrocyte physiology and increases susceptibility to demyelination, indicating that GPR37 could be a potential drug target for the treatment of demyelinating diseases such as multiple sclerosis.


Subject(s)
Demyelinating Diseases/genetics , Gene Expression Regulation/genetics , Myelin-Associated Glycoprotein/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Animals , Antigens/metabolism , Cell Line, Transformed , Chromatin Immunoprecipitation , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Corpus Callosum/pathology , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoamine Oxidase Inhibitors/toxicity , Myelin-Associated Glycoprotein/genetics , Oligodendroglia/metabolism , Proteoglycans/metabolism , RNA, Messenger/metabolism , Time Factors , Transfection
16.
J Biol Chem ; 292(23): 9711-9720, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28424266

ABSTRACT

Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα12/13-mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gαq/11-mediated or ß-arrestin-mediated signaling but rather involves liberation of Gßγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways.


Subject(s)
Malformations of Cortical Development/metabolism , Mutation, Missense , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Amino Acid Substitution , Cell Line , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Humans , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Protein Structure, Secondary , Protein Transport/genetics , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism
17.
Neuroscience ; 353: 58-75, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28392297

ABSTRACT

The group II metabotropic glutamate receptors mGluR2 and mGluR3 are key modulators of glutamatergic neurotransmission. In order to identify novel Group II metabotropic glutamate receptor (mGluR)-interacting partners, we screened the C-termini of mGluR2 and mGluR3 for interactions with an array of PDZ domains. These screens identified the Na+/H+ exchanger regulatory factors 1 and 2 (NHERF-1 & -2) as candidate interacting partners. Follow-up co-immunoprecipitation studies demonstrated that both mGluR2 and mGluR3 can associate with NHERF-1 and NHERF-2 in a cellular context. Functional studies revealed that disruption of PDZ interactions with mGluR2 enhanced receptor signaling to Akt. However, further studies of mGluR2 and mGluR3 signaling in astrocytes in which NHERF expression was reduced by gene knockout (KO) and/or siRNA knockdown techniques revealed that the observed differences in signaling between WT and mutant mGluR2 were likely not due to disruption of interactions with the NHERF proteins. Electron microscopic analyses revealed that Group II mGluRs were primarily expressed in glia and unmyelinated axons in WT, NHERF-1 and NHERF-2 KO mice, but the relative proportion of labeled axons over glial processes was higher in NHERF-2 KO mice than in controls and NHERF-1 KO mice. Interestingly, our anatomical studies also revealed that loss of either NHERF protein results in ventriculomegaly, which may be related to the high incidence of hydrocephaly that has previously been observed in NHERF-1 KO mice. Together, these studies support a role for NHERF-1 and NHERF-2 in regulating the distribution of Group II mGluRs in the murine brain, while conversely the effects of the mGluR2/3 PDZ-binding motifs on receptor signaling are likely mediated by interactions with other PDZ scaffold proteins beyond the NHERF proteins.


Subject(s)
Brain/metabolism , Phosphoproteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Sodium-Hydrogen Exchangers/metabolism , Animals , Astrocytes/metabolism , Brain/ultrastructure , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Nerve Fibers, Unmyelinated/metabolism , PDZ Domains , Phosphoproteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sodium-Hydrogen Exchangers/genetics
18.
Handb Exp Pharmacol ; 234: 127-146, 2016.
Article in English | MEDLINE | ID: mdl-27832487

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are a family of 33 receptors in humans that are widely expressed in various tissues and involved in many diverse biological processes. These receptors possess extremely large N-termini (NT) containing a variety of adhesion domains. A distinguishing feature of these receptors is the presence within the NT of a highly conserved GPCR autoproteolysis-inducing (GAIN) domain, which mediates autoproteolysis of the receptors into N-terminal and C-terminal fragments that stay non-covalently associated. The downstream signaling pathways and G protein-coupling preferences of many aGPCRs have recently been elucidated, and putative endogenous ligands for some aGPCRs have also been discovered and characterized in recent years. A pivotal observation for aGPCRs has been that deletion or removal of the NT up the point of GAIN cleavage results in constitutive receptor activation. For at least some aGPCRs, this activation is dependent on the unmasking of specific agonistic peptide sequences within the N-terminal stalk region (i.e., the region between the site of GAIN domain cleavage and the first transmembrane domain). However, the specific peptide sequences involved and the overall importance of the stalk region for activation can vary greatly from receptor to receptor. An emerging theme of work in this area is that aGPCRs are capable of versatile signaling activity that may be fine-tuned to suit the specific physiological roles played by the various members of this family.


Subject(s)
Cell Adhesion , Cell Membrane/metabolism , Mechanotransduction, Cellular , Receptors, G-Protein-Coupled/metabolism , Animals , Binding Sites , Cell Adhesion/drug effects , Cell Membrane/drug effects , Humans , Models, Molecular , Peptide Hydrolases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Proteolysis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/drug effects , Stress, Mechanical , Structure-Activity Relationship
19.
Nat Neurosci ; 19(3): 443-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26780512

ABSTRACT

Dyshomeostasis of amyloid-ß peptide (Aß) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aß appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aß-induced depression. Mechanistically, Aß triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN knock-in mouse lacking the PDZ motif, and a cell-permeable interfering peptide, we found that this mechanism is crucial for Aß-induced synaptic toxicity and cognitive dysfunction. Our results provide fundamental information on the molecular mechanisms of Aß-induced synaptic malfunction and may offer new mechanism-based therapeutic targets to counteract downstream Aß signaling.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cognition Disorders/physiopathology , PTEN Phosphohydrolase/physiology , Synaptic Transmission/physiology , Alzheimer Disease/complications , Amyloid beta-Peptides/toxicity , Animals , Cognition Disorders/complications , Disease Models, Animal , Gene Knock-In Techniques , Mice , Mice, Transgenic , PDZ Domains/genetics , PDZ Domains/physiology , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , Primary Cell Culture , Rats , Synaptic Transmission/drug effects
20.
J Biol Chem ; 291(7): 3385-94, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26710850

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and ß-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent.


Subject(s)
Angiogenic Proteins/agonists , Models, Molecular , Receptors, G-Protein-Coupled/agonists , Signal Transduction , Allosteric Regulation , Amino Acid Substitution , Angiogenic Proteins/chemistry , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Arrestins/chemistry , Arrestins/genetics , Arrestins/metabolism , Conserved Sequence , Genes, Reporter , HEK293 Cells , Humans , Ligands , NFATC Transcription Factors/agonists , NFATC Transcription Factors/chemistry , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Point Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Proteolysis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transforming Growth Factor alpha/chemistry , Transforming Growth Factor alpha/genetics , Transforming Growth Factor alpha/metabolism , Ubiquitination , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL
...