Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 22(1): 108, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974260

ABSTRACT

Freezing-of-gait (FOG) and impaired walking are common features of Parkinson's disease (PD). Provision of external stimuli (cueing) can improve gait, however, many cueing methods are simplistic, increase task loading or have limited utility in a real-world setting. Closed-loop (automated) somatosensory cueing systems have the potential to deliver personalised, discrete cues at the appropriate time, without requiring user input. Further development of cue delivery methods and FOG-detection are required to achieve this. In this feasibility study, we aimed to test if FOG-initiated vibration cues applied to the lower-leg via wearable devices can improve gait in PD, and to develop real-time FOG-detection algorithms. 17 participants with Parkinson's disease and daily FOG were recruited. During 1 h study sessions, participants undertook 4 complex walking circuits, each with a different intervention: continuous rhythmic vibration cueing (CC), responsive cueing (RC; cues initiated by the research team in response to FOG), device worn with no cueing (NC), or no device (ND). Study sessions were grouped into 3 stages/blocks (A-C), separated by a gap of several weeks, enabling improvements to circuit design and the cueing device to be implemented. Video and onboard inertial measurement unit (IMU) data were analyzed for FOG events and gait metrics. RC significantly improved circuit completion times demonstrating improved overall performance across a range of walking activities. Step frequency was significantly enhanced by RC during stages B and C. During stage C, > 10 FOG events were recorded in 45% of participants without cueing (NC), which was significantly reduced by RC. A machine learning framework achieved 83% sensitivity and 80% specificity for FOG detection using IMU data. Together, these data support the feasibility of closed-loop cueing approaches coupling real-time FOG detection with responsive somatosensory lower-leg cueing to improve gait in PD.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Wearable Electronic Devices , Humans , Cues , Parkinson Disease/diagnosis , Walking , Gait/physiology
2.
Med Phys ; 45(11): 4986-5003, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30168159

ABSTRACT

PURPOSE: Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. METHODS: We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. RESULTS: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. CONCLUSIONS: Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Liver/radiation effects , Radiotherapy, Image-Guided/methods , Adult , Healthy Volunteers , Humans , Ultrasonography , Young Adult
3.
Acta Biomater ; 77: 282-291, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29723703

ABSTRACT

Understanding the interaction between shock waves and tissue is critical for advancing the use of shock waves for medical applications, such as cancer therapy. This work aims to study shock wave-cell interaction in a more realistic environment, relevant to in vitro and in vivo studies, by using 3D computational models of healthy and cancerous cells. The results indicate that for a single cell embedded in an extracellular environment, the cellular geometry does not influence significantly the membrane strain but does influence the von Mises stress. On the contrary, the presence of neighbouring cells has a strong effect on the cell response, by increasing fourfold both quantities. The membrane strain response of a cell converges with more than three neighbouring cell layers, indicating that a cluster of four layers of cells is sufficient to model the membrane strain in a large domain of tissue. However, a full 3D tissue model is needed if the stress evaluation is of main interest. A tumour mimicking multicellular spheroid model is also proposed to study mutual interaction between healthy and cancer cells and shows that cancer cells can be specifically targeted in an early stage tumour-mimicking environment. STATEMENT OF SIGNIFICANCE: This work presents 3D computational models of shock-wave/cell interaction in a biophysically realistic environment using real cell morphology in tissue-mimicking phantoms and multicellular spheroids. Results show that cell morphology does not strongly influence the membrane strain but influences the von Mises stress. While the presence of neighbouring cells significantly increases the cell response, four cell layers are enough to capture the membrane strain change in tissue. However, a full tissue model is necessary if accurate stress analysis is needed. The work also shows that cancer cells can be specifically targeted in early stage tumour mimicking environment. This work is a step towards realistic modelling of shock-wave/cell interactions in tissues and provides insight on the use of 3D models for different scenarios.


Subject(s)
High-Energy Shock Waves , Neoplasms/pathology , Spheroids, Cellular/physiology , Biomimetics , Cell Communication , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cell Shape , Computer Simulation , Extracorporeal Shockwave Therapy , Humans , Imaging, Three-Dimensional , Microscopy , Models, Biological , Neoplasms/metabolism , Phantoms, Imaging
4.
Biophys J ; 114(6): 1433-1439, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590600

ABSTRACT

Shock waves are used clinically for breaking kidney stones and treating musculoskeletal indications. The mechanisms by which shock waves interact with tissue are still not well understood. Here, ultra-high-speed imaging was used to visualize the deformation of individual cells embedded in a tissue-mimicking phantom when subject to shock-wave exposure from a clinical source. Three kidney epithelial cell lines were considered to represent normal healthy (human renal epithelial), cancer (CAKI-2), and virus-transformed (HK-2) cells. The experimental results showed that during the compressive phase of the shock waves, there was a small (<2%) decrease in the projected cell area, but during the tensile phase, there was a relatively large (∼10%) increase in the projected cell area. The experimental observations were captured by a numerical model with a constitutive material framework consisting of an equation of state for the volumetric response and hyper-viscoelasticity for the deviatoric response. To model the volumetric cell response, it was necessary to change from a higher bulk modulus during the compression to a lower bulk modulus during the tensile shock loading. It was discovered that cancer cells showed a smaller deformation but faster response to the shock-wave tensile phase compared to their noncancerous counterparts. Cell viability experiments, however, showed that cancer cells suffered more damage than other cell types. These data suggest that the cell response to shock waves is specific to the type of cell and waveforms that could be tailored to an application. For example, the model predicts that a shock wave with a tensile stress of 4.59 MPa would increase cell membrane permeability for cancer cells with minimal impact on normal cells.


Subject(s)
Extracorporeal Shockwave Therapy , Models, Biological , Neoplasms/pathology , Neoplasms/therapy , Single-Cell Analysis , Stress, Mechanical
5.
J Electron Imaging ; 26(6)2017 Oct 04.
Article in English | MEDLINE | ID: mdl-29225433

ABSTRACT

In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

6.
IEEE J Biomed Health Inform ; 19(1): 325-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25561453

ABSTRACT

Obstructive sleep apnoea (OSA) is a sleep disorder with long-term consequences. Long-term effects include sleep-related issues and cardiovascular diseases. OSA is often diagnosed with an overnight sleep test called a polysomnogram. Monitoring can be costly with long wait times for diagnosis. In this paper, a novel OSA screening framework and prototype phone application are introduced. A database of 856 patients that underwent at-home polygraphy was collected. Features were derived from audio, actigraphy, photoplethysmography (PPG), and demographics, and used as the inputs of a support vector machine (SVM) classifier. The SVM was trained on 735 patients and tested on 121 patients. Classification on the test set had an accuracy of up to 92.2% when classifying subjects as having moderate or severe OSA versus being healthy or a snorer based on the clinicians' diagnoses. The signal processing and machine learning algorithms were ported to Java and integrated into the phone application-SleepAp. SleepAp records the body position, audio, actigraphy and PPG signals, and implements the clinically validated STOP-BANG questionnaire. It derives features from the signals and classifies the user as having OSA or not using the SVM trained on the clinical database. The resulting software could provide a new, easy-to-use, low-cost, and widely available modality for OSA screening.


Subject(s)
Algorithms , Cell Phone , Diagnosis, Computer-Assisted/methods , Mobile Applications , Polysomnography/instrumentation , Sleep Apnea, Obstructive/diagnosis , Diagnosis, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Mass Screening/instrumentation , Mass Screening/methods , Polysomnography/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...