Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 248: 125984, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37506786

ABSTRACT

Recently, natural polymers like chitosan have gained attention as promising adsorbents for water treatment. By combining chitosan with magnetic nanoparticles, their adsorption capabilities can be enhanced. In this study, chitosan-magnetite nanocomposite (CMNC) was synthesized via coprecipitation method to remove nickel and cobalt from aqueous solutions. The physicochemical properties of the synthesized CMNC were investigated by various techniques, including FESEM, TEM, XPS, FTIR, XRD, and VSM. The electron microscopy results confirmed the uniform dispersion of magnetite nanoparticles within CMNC nanocomposites, while VSM confirmed their significant magnetic properties. The adsorption experiments showed that at optimal conditions (pH = 6, contact time = 2 h, adsorbent dosage = 2 g/l), CMNC has high adsorption capacities of 30.03 mg/g for Ni2+ and 53.19 mg/g for Co2+. Furthermore, the adsorption data fitted best with the Langmuir isotherm, show that the active sites on CMNC are energetically homogenous. According to kinetic analysis, the experimental data were in good agreement with both pseudo-second-order and intra-particle diffusion models, which suggest that chemical sorption, along with mass transfer steps, influence the overall adsorption process. Finally, investigating the thermodynamic parameters (∆Gads, ∆Hads, ∆Sads) showed that the adsorption process on CMNC was endothermic and spontaneous, with stronger interactions observed between CMNC and Co2+ compared to Ni2+.


Subject(s)
Chitosan , Nanocomposites , Water Pollutants, Chemical , Water Purification , Nickel/analysis , Chitosan/chemistry , Cobalt , Kinetics , Ferrosoferric Oxide , Adsorption , Nanocomposites/chemistry , Magnetic Phenomena , Water Pollutants, Chemical/chemistry , Water Purification/methods , Hydrogen-Ion Concentration
2.
Heliyon ; 6(12): e05776, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426323

ABSTRACT

The native cellulose, through TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, can be converted into individual fibers. It has been observed that oxidized fibers disperse completely and individually in water. It is believed that electrostatic repulsive forces might be responsible for such observations. In order to study the TEMPO-oxidation of cellulose molecules, we used Density Functional Theory (DFT) calculations and Flory-Huggins theory combined with molecular dynamics (MD). The surface electrostatic potential in native cellulose and TEMPO-oxidized cellulose were calculated using DFT calculations. We found that TEMPO-oxidized cellulose accommodates a threefold screw conformation where the negatively charged (-COO-) functional groups are pointed away from the surface in all spatial directions. This spatial orientation causes that TEMPO-oxidized cellulose molecules repulse each other due to strong negatively charged surface. At the same time, the spatial orientation increases the hydrophilicity in TEMPO-oxidized cellulose molecules. These observations explain the improved dispersion in water and separability of TEMPO-oxidized cellulose molecules. We obtained large and positive Flory-Huggins interaction parameters for TEMPO-oxidized cellulose molecules indicating their higher dispersion once in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...