Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 125(19): 194502, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129118

ABSTRACT

Using isotope substitution neutron scattering data, we present a detailed structural analysis of the short and intermediate range structures of the five known forms of amorphous ice. Two of the lower density forms--amorphous solid water and hyperquenched glassy water--have a structure very similar to each other and to low density amorphous ice, a structure which closely resembles a disordered, tetrahedrally coordinated, fully hydrogen bonded network. High density and very high density amorphous ices retain this tetrahedral organization at short range, but show significant differences beyond about 3.1 A from a typical water oxygen. The first diffraction peak in all structures is seen to be solely a function of the intermolecular organization. The short range connectivity in the two higher density forms is more homogeneous, while the hydrogen site disorder in these forms is greater. The low Q behavior of the structure factors indicates no significant density or concentration fluctuations over the length scale probed. We conclude that these three latter forms of ice are structurally distinct. Finally, the x-ray structure factors for all five amorphous systems are calculated for comparison with other studies.

2.
Phys Rev Lett ; 89(20): 205503, 2002 Nov 11.
Article in English | MEDLINE | ID: mdl-12443486

ABSTRACT

The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing "interstitial," the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled.

3.
Phys Rev Lett ; 88(22): 225503, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12059427

ABSTRACT

Neutron diffraction with isotope substitution is used to determine the structures of high (HDA) and low (LDA) density amorphous ice. Both "phases" are fully hydrogen bonded, tetrahedral networks, with local order similarities between LDA and ice Ih, and HDA and liquid water. Moving from HDA, through liquid water and LDA to ice Ih, the second shell radial order increases at the expense of spatial order. This is linked to a fifth first neighbor "interstitial" that restricts the orientations of first shell waters. This "lynch pin" molecule which keeps the HDA structure intact has implications for the nature of the HDA-LDA transition that bear on the current metastable water debate.

4.
Biophys J ; 81(3): 1588-99, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11509372

ABSTRACT

Minor groove binding ligands are of great interest due to their extraordinary importance as transcription controlling drugs. We performed three molecular dynamics simulations of the unbound d(CGCGAATTCGCG)(2) dodecamer and its complexes with Hoechst33258 and Netropsin. The structural behavior of the piperazine tail of Hoechst33258, which has already been shown to be a contributor in sequence-specific recognition, was analyzed. The simulations also reveal that the tails of the ligands are able to influence the width of the minor groove. The groove width is even sensitive for conformational transitions of these tails, indicating a high adaptability of the minor groove. Furthermore, the ligands also exert an influence on the B(I)/B(II) backbone conformational substate behavior. All together these results are important for the understanding of the binding process of sequence-specific ligands.


Subject(s)
DNA/chemistry , DNA/metabolism , Ligands , Nucleic Acid Conformation , Base Sequence , Bisbenzimidazole/chemistry , Bisbenzimidazole/metabolism , Computer Simulation , DNA/genetics , Models, Molecular , Netropsin/chemistry , Netropsin/metabolism , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/metabolism , Piperazine , Piperazines/chemistry , Piperazines/metabolism
5.
J Am Chem Soc ; 123(21): 5044-9, 2001 May 30.
Article in English | MEDLINE | ID: mdl-11457333

ABSTRACT

The development of sequence-specific minor groove binding ligands is a modern and rapidly growing field of research because of their extraordinary importance as transcription-controlling drugs. We performed three molecular dynamics simulations in order to clarify the influence of minor groove binding of two ImHpPyPy-beta-Dp polyamides to the d(CCAGTACTGG)(2) decamer in the B-form. This decamer contains the recognition sequence for the trp repressor (5'-GTACT-3'), and it was investigated recently by X-ray crystallography. On one hand we are able to reproduce X-ray-determined DNA--drug contacts, and on the other hand we provide new contact information which is important for the development of potential ligands. The new insights show how the beta-tail of the polyamide ligands contributes to binding. Our simulations also indicate that complexation freezes the DNA backbone in a specific B(I) or B(II) substate conformation and thus optimizes nonbonded contacts. The existence of this distinct B(I)/B(II) substate pattern also allows the formation of water-mediated contacts. Thus, we suggest the B(I) <==> B(II) substate behavior to be an important part of the indirect readout of DNA.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Nylons/chemistry , Base Sequence , Hydrogen Bonding
6.
Biopolymers ; 61(4): 276-86, 2001.
Article in English | MEDLINE | ID: mdl-12115142

ABSTRACT

The exact understanding of the interaction of minor groove binding drugs with DNA is of interest due to their importance as transcription controlling drugs. In this study we performed four molecular dynamics simulations, one of the uncomplexed d(CGCGAATTCGCG)(2) dodecamer and three simulations of the DNA complexed with the minor groove binder netropsin. The charged guanidinium and amidinium ends of the small ligand were in one simulation formally uncharged, in the second one normally charged, and in the third simulation we doubled the charges of the two ends. So we are able to filter out the influence the charges exert on the DNA structure. The positive charges reduce the width of the minor groove showing that charges are able to modify the groove width by charge neutralization of the negative phosphate groups. The quality of the used force field was successfully tested by comparing the results of the uncomplexed dodecamer with already reported NMR and x-ray studies. Thus our simulations should be able to describe the minor groove width of DNA in a correct manner underlying the validity of the results.


Subject(s)
DNA/chemistry , Netropsin/chemistry , Base Sequence , Binding Sites , Biopolymers/chemistry , Electrochemistry , Models, Molecular , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Thermodynamics
7.
Nucleic Acids Res ; 29(24): 5036-43, 2001 Dec 15.
Article in English | MEDLINE | ID: mdl-11812834

ABSTRACT

Exocyclic groups in the minor groove of DNA modulate the affinity and positioning of nucleic acids to the histone protein. The addition of exocyclic groups decreases the formation of this protein-DNA complex, while their removal increases nucleosome formation. On the other hand, recent theoretical results show a strong correlation between the B(I)/B(II) phosphate backbone conformation and the hydration of the grooves of the DNA. We performed a simulation of the d(CGCGAATTCGCG)2 Drew Dickerson dodecamer and one simulation of the d(CGCIAATTCGCG)2 dodecamer in order to investigate the influence of the exocyclic amino group of guanine. The removal of the amino group introduces a higher intrinsic flexibility to DNA supporting the suggestions that make the enhanced flexibility responsible for the enlarged histone complexation affinity. This effect is attributed to changes in the destacking interactions of both strands of the DNA. The differences in the hydration of the minor groove could be the explanation of this flexibility. The changed hydration of the minor groove also leads to a different B(I)/B(II) substate pattern. Due to the fact that the histone preferentially builds contacts with the backbone of the DNA, we propose an influence of these B(I)/B(II) changes on the nucleosome formation process. Thus, we provide an additional explanation for the enhanced affinity to the histone due to removal of exocyclic groups. In terms of B(I)/B(II) we are also able to explain how minor groove binding ligands could affect the nucleosome assembly without disrupting the structure of DNA.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Binding Sites , Guanine/chemistry , Hydrogen Bonding , Inosine/chemistry , Oligonucleotides/chemistry , Thermodynamics
9.
J Biomol Struct Dyn ; 17(2): 223-35, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10563572

ABSTRACT

Investigations of spontaneous, i.e. not forced, B-DNA's B(I)<==>B(II) substate transitions are carried out on the d(CGCGAATTCGCG)2 EcoRI dodecamer sequence using Molecular Dynamics Simulations. Analysis of the resulting transition processes with respect to the backbone angles reveals concerted changes not only for backbone angles epsilon, zeta, and beta, but also for the 5'-delta and 5'-chi angles. For alpha and delta inside the interconverting base step, a change is seen in short lived B(II) conformers. With respect to base morphology distinct changes are observed for buckle, propeller twist, shift, roll and twist, as well as x-displacement and tip. The base mainly involved in the changes is identified as the base preceding the interconverting phosphate. Altogether single B(I)<==>B(II) interconversions result only in local distortions represented by the larger spread of most parameters. Comparison of the atomic positional fluctuations derived from the simulation with those obtained from the static X-ray structure results in striking similarities.


Subject(s)
DNA/chemistry , Models, Molecular , Nucleic Acid Conformation , Computer Simulation , Crystallography, X-Ray , Monte Carlo Method , Substrate Specificity
10.
Biophys J ; 77(1): 398-409, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10388766

ABSTRACT

Conformational substates of B-DNA had been observed so far in synthetic oligonucleotides but not in naturally occurring highly polymeric B-DNA. Our low-temperature experiments show that native B-DNA from salmon testes and the d(CGCGAATTCGCG)2 dodecamer have the same BI and BII substates. Nonequilibrium distribution of conformer population was generated by quenching hydrated unoriented films to 200 K, and isothermal structural relaxation toward equilibrium by interconversion of substates was followed by Fourier transform infrared spectroscopy. BI interconverts into BII on isothermal relaxation at 200 K, whereas on slow cooling from ambient temperature, BII interconverts into BI. Our estimation of the dodecamer's BI-to-BII conformer substate population by curve resolution of the symmetrical stretching vibration of the ionic phosphate is 2.4 +/- 0.5 to 1 at 200 K, and it is 1.3 +/- 0.5 to 1 between 270 and 290 K. Pronounced spectral changes upon BI-to-BII interconversion are consistent with base destacking coupled with migration of water from ionic phosphate toward the phosphodiester and sugar moieties. Nonspecific interaction of proteins with the DNA backbone could become specific by induced-fit-type interactions with either BI or BII backbone conformations. This suggests that the BI-to-BII substate interconversion could be a major contributor to the protein recognition process.


Subject(s)
DNA/chemistry , Oligodeoxyribonucleotides/chemistry , Salmon/metabolism , Testis/chemistry , Animals , Male , Nucleic Acid Conformation , Spectroscopy, Fourier Transform Infrared , Temperature , Water/chemistry
11.
Science ; 279(5355): 1332-5, 1998 Feb 27.
Article in English | MEDLINE | ID: mdl-9478889

ABSTRACT

In outer space, high-energy irradiation of cryogenic ice mixtures of abundant water and carbon dioxide is expected to form solid carbonic acid. Experiments and thermodynamic analyses show that crystalline carbonic acid sublimates without decomposition. Free-energy considerations based on highly accurate molecular quantum mechanics, in combination with vapor pressures resulting from experimental sublimation rates, suggest that in the gas phase, a monomer and dimer of carbonic acid are in equilibrium, comparable to that of formic acid. Gaseous carbonic acid could be present in comets, on Mars and outer solar system bodies, in interstellar icy grains, and in Earth's upper atmosphere.

12.
Science ; 273(5271): 90-2, 1996 Jul 05.
Article in English | MEDLINE | ID: mdl-8688057

ABSTRACT

Vapor-deposited amorphous solid and hyperquenched glassy water were found to irreversibly transform, on compression at 77 kelvin, to a high-density amorphous solid. On heating at atmospheric pressure, this solid became viscous water (water B), with a reversible glass-liquid transition onset at 129 +/- 2 kelvin. A different form of viscous water (water A) was formed by heating the uncompressed vapor-deposited amorphous solid and hyperquenched liquid water. On thermal cycling up to 148 kelvin, water B remained kinetically and thermodynamically distinct from water A. The occurrence of these two states, which do not interconvert, helps explain both the configurational relaxation of water and stress-induced amorphization.

13.
Biophys J ; 69(6): 2679-94, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8599674

ABSTRACT

For hydrated metmyoglobin, methemoglobin, and lysozyme powders, the freezable water fraction of between approximately 0.3-0.4 g water/g protein up to approximately 0.7-0.8 g water/g protein has been fully vitrified by cooling at rates up to approximately 1500 K min-1 and the influence of cooling rate characterized by x-ray diffractograms. This vitreous but freezable water fraction started to crystallize at approximately 210 K to cubic ice and at approximately 240 K to hexagonal ice. Measurements by differential scanning calorimetry have shown that this vitreous but freezable water fraction undergoes, on reheating at a rate of 30 K min-1, a glass-->liquid transition with an onset temperature of between approximately 164 and approximately 174 K, with a width of between approximately 9 and approximately 16 degrees and an increase in heat capacity of between approximately 20 and approximately 40 J K-1 (mol of freezable water)-1 but that the glass transition disappears upon crystallization of the freezable water. These calorimetric features are similar to those of water imbibed in the pores of a synthetic hydrogel but very different from those of glassy bulk water. The difference to glassy bulk water's properties is attributed to hydrophilic interaction and H-bonding of the macromolecules' segments with the freezable water fraction, which thereby becomes dynamically modified. Abrupt increase in minimal or critical cooling rate necessary for complete vitrification is observed at approximately 0.7-0.8 g water/g protein, which is attributed to an abrupt increase of water's mobility, and it is remarkably close to the threshold value of water's mobility on a hydrated protein reported by Kimmich et al. (1990, Biophys. J. 58:1183). The hydration level of approximately 0.7-0.8 g water/g protein is approximately that necessary for completing the secondary hydration shell.


Subject(s)
Methemoglobin/chemistry , Metmyoglobin/chemistry , Muramidase/chemistry , Protein Conformation , Calorimetry, Differential Scanning , Crystallization , Freezing , Hot Temperature , Humans , Hydrogen Bonding , Kinetics , Polyhydroxyethyl Methacrylate , Thermodynamics , Water , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...