Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Disabil Rehabil Assist Technol ; 13(4): 388-393, 2018 May.
Article in English | MEDLINE | ID: mdl-28974119

ABSTRACT

Following a transfemoral amputation (TFA), numerous changes in movement patterns during gait can occur. Frontal plane hip and pelvis compensatory strategies are recognized among individuals with a TFA, some thought to aid in safe foot clearance during the swing phase of gait. The aim of this case study was to evaluate the effect of an active ankle dorsiflexion provided by a microprocessor-controlled prosthetic foot, as well as the effect of individualized training on these parameters. In this case study, a 42-year-old male underwent 3 D gait analysis. Data were captured for two conditions; with a microprocessor-controlled prosthetic foot with active/inactive ankle dorsiflexion, during two sessions; before and after 6 weeks of individualized training. The main outcomes analyzed were frontal plane pelvis and hip kinematics. Prior to training, pelvic lift decreased slightly, coupled with an increase in hip abduction, during gait with the active ankle dorsiflexion of a prosthetic foot, compared to inactive dorsiflexion. After the training period, the pelvic lift was further decreased and an increase in hip adduction was concurrently seen. The results of this case study indicate a positive effect of the active dorsiflexion of the prosthetic foot but highlight the need for specific training after prescription of a microprocessor prosthetic foot. Implications for rehabilitation Decreased compensatory changes seen in this case study indicate a positive effect of the active dorsiflexion of the prosthetic foot, especially after a 6-week training period. Individualized training should be aimed at helping the user utilizing the benefits of the active dorsiflexion of the microprocessor prosthetic foot, implementing exercises that improve gait quality, technical training for this specific foot, strength training and balance exercises.


Subject(s)
Amputees/rehabilitation , Ankle Joint/physiology , Artificial Limbs , Foot/physiology , Pelvis/physiology , Adult , Biomechanical Phenomena , Gait , Humans , Male , Prosthesis Design , Range of Motion, Articular , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...