Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1127485, 2023.
Article in English | MEDLINE | ID: mdl-37251386

ABSTRACT

A single population of interferon-regulatory factor 8 (Irf8)-dependent conventional dendritic cell (cDC type1) is considered to be responsible for both immunogenic and tolerogenic responses depending on the surrounding cytokine milieu. Here, we challenge this concept of an omnipotent single Irf8-dependent cDC1 cluster through analysis of pulmonary cDCs at single cell resolution. We report existence of a pulmonary cDC1 cluster lacking Xcr1 with an immunogenic signature that clearly differs from the Xcr1 positive cDC1 cluster. The Irf8+Batf3+Xcr1- cluster expresses high levels of pro-inflammatory genes associated with antigen presentation, migration and co-stimulation such as Ccr7, Cd74, MHC-II, Ccl5, Il12b and Relb while, the Xcr1+ cDC1 cluster expresses genes corresponding to immune tolerance mechanisms like Clec9a, Pbx1, Cadm1, Btla and Clec12a. In concordance with their pro-inflammatory gene expression profile, the ratio of Xcr1- cDC1s but not Xcr1+cDC1 is increased in the lungs of allergen-treated mice compared to the control group, in which both cDC1 clusters are present in comparable ratios. The existence of two distinct Xcr1+ and Xcr1- cDC1 clusters is furthermore supported by velocity analysis showing markedly different temporal patterns of Xcr1- and Xcr1+cDC1s. In summary, we present evidence for the existence of two different cDC1 clusters with distinct immunogenic profiles in vivo. Our findings have important implications for DC-targeting immunomodulatory therapies.


Subject(s)
Dendritic Cells , Lung , Animals , Mice , Sequence Analysis, RNA
2.
Clin Transl Immunology ; 11(6): e1398, 2022.
Article in English | MEDLINE | ID: mdl-35757569

ABSTRACT

Objectives: The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods: Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results: We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion: Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.

3.
Eur Respir J ; 57(6)2021 06.
Article in English | MEDLINE | ID: mdl-33303549

ABSTRACT

BACKGROUND: Elevated levels of interleukin (IL)-17A were detected in the airways of patients with cystic fibrosis (CF), but its cellular sources and role in the pathogenesis of CF lung disease remain poorly understood. The aim of this study was to determine the sources of IL-17A and its role in airway inflammation and lung damage in CF. METHODS: We performed flow cytometry to identify IL-17A-producing cells in lungs and peripheral blood from CF patients and ß-epithelial Na+ channel transgenic (Scnn1b-Tg) mice with CF-like lung disease, and determined the effects of genetic deletion of Il17a and Rag1 on the pulmonary phenotype of Scnn1b-Tg mice. RESULTS: T-helper 17 cells, CD3+CD8+ T-cells, γδ T-cells, invariant natural killer T-cells and innate lymphoid cells contribute to IL-17A secretion in lung tissue, lymph nodes and peripheral blood of patients with CF. Scnn1b-Tg mice displayed increased pulmonary expression of Il17a and elevated IL-17A-producing innate and adaptive lymphocytes with a major contribution by γδ T-cells. Lack of IL-17A, but not the recombination activating protein RAG1, reduced neutrophilic airway inflammation in Scnn1b-Tg mice. Genetic deletion of Il17a or Rag1 had no effect on mucus obstruction, but reduced structural lung damage and revealed an IL-17A-dependent macrophage activation in Scnn1b-Tg mice. CONCLUSIONS: We identify innate and adaptive sources of IL-17A in CF lung disease. Our data demonstrate that IL-17A contributes to airway neutrophilia, macrophage activation and structural lung damage in CF-like lung disease in mice. These results suggest IL-17A as a novel target for anti-inflammatory therapy of CF lung disease.


Subject(s)
Cystic Fibrosis , Animals , CD8-Positive T-Lymphocytes , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interleukin-17 , Lung , Lymphocytes , Mice , Mice, Inbred C57BL
4.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Article in English | MEDLINE | ID: mdl-32805279

ABSTRACT

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Adult , Animals , Biopsy , Calgranulin A/administration & dosage , Calgranulin A/analysis , Calgranulin B/analysis , Calgranulin B/genetics , Child, Preschool , Colon/microbiology , Colon/pathology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Dysbiosis/microbiology , Dysbiosis/prevention & control , Enterocolitis, Necrotizing/epidemiology , Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Feces/chemistry , Feces/microbiology , Female , Follow-Up Studies , Gastrointestinal Microbiome/genetics , Humans , Immunity, Mucosal , Infant , Infant, Newborn , Infant, Premature/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Obesity/epidemiology , Obesity/immunology , Obesity/microbiology , Obesity/prevention & control , RNA, Ribosomal, 16S/genetics , Sepsis/epidemiology , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control
5.
Nat Commun ; 11(1): 1114, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111837

ABSTRACT

Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Cell Movement/immunology , Chemokines/metabolism , Integrins/metabolism , Lymph Nodes/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Endothelium, Lymphatic/physiology , Integrins/genetics , Lymph/cytology , Lymph Nodes/cytology , Lymphocyte Activation , Mice , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Receptors, Lymphocyte Homing/metabolism
6.
Sci Immunol ; 4(33)2019 03 29.
Article in English | MEDLINE | ID: mdl-30926591

ABSTRACT

Lymphocytes recirculate continuously between the blood and lymphoid organs, a process that is of fundamental importance for proper functioning of the immune system. The molecular mechanisms underlying lymphocyte trafficking to the spleen remain an enigma. Here, we show that lymphocytes enter the spleen preferentially from vessels in the red pulp rather than the marginal sinus or the vasculature in the white pulp. Ex vivo adhesion assays in mice and humans, together with genetic ablation of Clever-1 in mice, indicate that CD8+ T cell and B220+ B cell homing to the spleen via the red pulp is Clever-1 dependent. Moreover, absence of Clever-1 leads to down-regulation of the B cell attractant chemokine, CXCL13, on spleen endothelium. CXCL13 is known to guide B cell trafficking to lymphoid organs, and its lack may contribute to the observed decrease in B cell trafficking into the spleen as well. In summary, this study identifies Clever-1 as an important molecule controlling lymphocyte entry into the spleen, along with a critical role for the splenic red pulp in this regulated trafficking. Furthermore, the results demonstrate that location-specific homing-associated molecules guide lymphocyte entry into the spleen.


Subject(s)
Cell Adhesion Molecules, Neuronal/immunology , Lymphocytes/immunology , Receptors, Lymphocyte Homing/immunology , Spleen/immunology , Animals , Cell Adhesion Molecules, Neuronal/genetics , Female , Humans , Lymph Nodes/immunology , Lymphopenia/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Lymphocyte Homing/genetics
7.
Blood ; 131(5): 533-545, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29233822

ABSTRACT

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Mycobacterium Infections/prevention & control , Protective Agents , Receptors, Interferon/genetics , Animals , Cells, Cultured , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium avium , Protective Agents/metabolism , Protective Agents/therapeutic use , RAW 264.7 Cells , Interferon gamma Receptor
8.
Trends Immunol ; 38(6): 432-443, 2017 06.
Article in English | MEDLINE | ID: mdl-28499492

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are critical in the elimination of infected or malignant cells and are emerging as a major therapeutic target. How CTLs recognize and kill harmful cells has been characterized in vitro but little is known about these processes in the living organism. Here we review recent insights into CTL-mediated killing with an emphasis on in vivo CTL biology. Specifically, we focus on the possible rate-limiting steps determining the efficiency of CTL-mediated killing. We also highlight the need for cell-based datasets that permit the quantification of CTL dynamics, including CTL location, migration, and killing rates. A better understanding of these factors is required to predict protective CD8 T cell immunity in vivo and to design optimized vaccination protocols.


Subject(s)
Cytotoxicity, Immunologic , Immunity, Cellular , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Movement , Humans , Models, Immunological , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...