Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Pathol ; 51: 25-31, 2016 May.
Article in English | MEDLINE | ID: mdl-27067779

ABSTRACT

Porocarcinomas are a rare eccrine carcinoma with significant metastatic potential. Oncogenic drivers of porocarcinomas have been underexplored, with PIK3CA-activating mutation reported in 1 case. We analyzed 5 porocarcinomas by next-generation sequencing using the DNA component of the Oncomine Comprehensive Assay, which provides data on copy number changes and mutational events in 126 cancer-relevant genes through multiplex polymerase chain reaction. We detected an average of 3.3 high-confidence nonsynonymous mutations per tumor (range, 1-6), including a spectrum of oncogenic activation and tumor suppressor inactivation events. Tumor suppressor mutations included TP53 (4/5, 80%), RB1 (3/5, 60%), ATM (2/5, 40%), ARID1A (1/5, 20%), and CDKN2A (1/5, 20%). In 4 (80%) of 5 tumors, at least 1 potential oncogenic driver was identified. Activating HRAS mutations were detected in 2 (40%) of 5, including G13D and Q61L hotspot mutations. Mutations of EGFR were identified in 2 (40%) of 5; these mutations have been previously reported in cancer but did not affect classic activation hotspot sites. EGFR and HRAS mutations were mutually exclusive. HRAS mutations were detected by targeted sequencing in a minority of benign eccrine poromas (2/17; 11.7%), suggesting that HRAS activation may rarely be an early event in sweat gland neoplasia. Together, our data suggest roles for HRAS and EGFR as drivers in a subset of poroma and porocarcinoma. TP53 and RB1 inactivation events are also likely to contribute to tumorigenesis. These findings suggest that porocarcinomas display diversity with respect to oncogenic drivers, which may have implications for targeted therapy in metastatic or unresectable cases.


Subject(s)
Eccrine Porocarcinoma/genetics , Genes, Tumor Suppressor , Genes, erbB-1/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sweat Gland Neoplasms/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Male , Middle Aged , Mutation , Young Adult
2.
Mod Pathol ; 29(7): 685-97, 2016 07.
Article in English | MEDLINE | ID: mdl-27102345

ABSTRACT

Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing (NGS) profiling of 38 formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically relevant genes. Potentially actionable mutations and copy number alterations were prioritized based on gain- and loss-of-function analyses, and catalogued, approved, and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0-5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically relevant hotspot gain-of-function mutations identified in 71% of diffuse large B-cell lymphomas and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (diffuse large B-cell and marginal zone lymphoma), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma), and NF1 (diffuse large B-cell lymphoma), and gain-of-function mutations in the oncogenes HRAS (follicular lymphoma) and NRAS (diffuse large B-cell lymphoma) were also observed. Together, our study demonstrates that NGS can be used to profile routine formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas for identification of somatic-driving alterations and nomination of potential therapeutic strategies.


Subject(s)
Biomarkers, Tumor/genetics , Eye Neoplasms/genetics , Gene Expression Profiling , Lymphoma/genetics , Aged , Aged, 80 and over , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , DNA-Binding Proteins , Enhancer of Zeste Homolog 2 Protein/genetics , Eye Neoplasms/pathology , Female , Genomics , Histone-Lysine N-Methyltransferase/genetics , Humans , Lymphoma/pathology , Male , Middle Aged , Mutation , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics
3.
Mol Cancer Res ; 13(4): 613-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25593300

ABSTRACT

UNLABELLED: Phyllodes tumors are rare fibroepithelial tumors with variable clinical behavior accounting for a small subset of all breast neoplasms, yet little is known about the genetic alterations that drive tumor initiation and/or progression. Here, targeted next-generation sequencing (NGS) was used to identify somatic alterations in formalin-fixed paraffin-embedded (FFPE) patient specimens from malignant, borderline, and benign cases. NGS revealed mutations in mediator complex subunit 12 (MED12) affecting the G44 hotspot residue in the majority (67%) of cases spanning all three histologic grades. In addition, loss-of-function mutations in p53 (TP53) as well as deleterious mutations in the tumor suppressors retinoblastoma (RB1) and neurofibromin 1 (NF1) were identified exclusively in malignant tumors. High-level copy-number alterations (CNA) were nearly exclusively confined to malignant tumors, including potentially clinically actionable gene amplifications in IGF1R and EGFR. Taken together, this study defines the genomic landscape underlying phyllodes tumor development, suggests potential molecular correlates to histologic grade, expands the spectrum of human tumors with frequent recurrent MED12 mutations, and identifies IGF1R and EGFR as potential therapeutic targets in malignant cases. IMPLICATIONS: Integrated genomic sequencing and mutational profiling provides insight into the molecular origin of phyllodes tumors and indicates potential druggable targets in malignant disease. Visual Overview: http://mcr.aacrjournals.org/content/early/2015/04/02/1541-7786.MCR-14-0578/F1.large.jpg.


Subject(s)
Breast Neoplasms/genetics , ErbB Receptors/genetics , Mediator Complex/genetics , Mutation , Phyllodes Tumor/genetics , Receptors, Somatomedin/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Gene Amplification , High-Throughput Nucleotide Sequencing/methods , Humans , Neurofibromin 1/genetics , Phyllodes Tumor/pathology , Receptor, IGF Type 1 , Retinoblastoma Protein/genetics , Sequence Analysis, DNA/methods , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...