Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848282

ABSTRACT

Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction obtained using a straightforward and reproducible annealing technique. We demonstrate that the transport through the narrow junction is dominated by only two quantum channels, with transparencies up to unity. This novel qubit platform holds great promise for quantum information applications, not only because it incorporates technologically relevant materials, but also because it provides new opportunities, like an ultrastrong spin-orbit coupling in the few-channel regime of Josephson junctions.

2.
Nano Lett ; 20(10): 7129-7135, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32872789

ABSTRACT

2D systems that host 1D helical states are advantageous from the perspective of scalable topological quantum computation when coupled to a superconductor. Graphene is particularly promising for its high electronic quality, its versatility in van der Waals heterostructures, and its electron- and hole-like degenerate 0th Landau level. Here we study a compact double-layer graphene SQUID (superconducting quantum interference device), where the superconducting loop is reduced to the superconducting contacts connecting two parallel graphene Josephson junctions. Despite the small size of the SQUID, it is fully tunable by the independent gate control of the chemical potentials in both layers. Furthermore, both Josephson junctions show a skewed current-phase relationship, indicating the presence of superconducting modes with high transparency. In the quantum Hall regime, we measure a well-defined conductance plateau of 2e2/h indicative of counter-propagating edge channels in the two layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...