Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(11): 5695-5700, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38444101

ABSTRACT

Deep eutectic solvents (DESs) show promise as boundary lubricants between sliding surfaces, taking advantage of their physical stability, chemical stability, and tunability. Here, we study friction forces across nanofilms of two archetypal DES mixtures: choline chloride + ethylene glycol and choline chloride + glycerol. Using a surface force balance, we control the film thickness (to subnanometer precision) and determine the friction force simultaneously. Measurements are made at different mole fractions of the choline chloride salt and the molecular solvent, allowing us to determine the role of each species in the observed behavior. We find that the nature of the molecular solvent is dominant in determining the lubrication behavior, while the fraction of ChCl is relatively less important. By analyzing the steps in friction and the gradient of friction with load as the layers squeeze away from between the surfaces, we learn various mechanistic aspects of lubrication across the DES nanofilms of relevance to design and optimization of these promising fluids.

2.
Nat Commun ; 14(1): 2621, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147284

ABSTRACT

Upon approaching the glass transition, the relaxation of supercooled liquids is controlled by activated processes, which become dominant at temperatures below the so-called dynamical crossover predicted by Mode Coupling theory (MCT). Two of the main frameworks rationalising this behaviour are dynamic facilitation theory (DF) and the thermodynamic scenario which give equally good descriptions of the available data. Only particle-resolved data from liquids supercooled below the MCT crossover can reveal the microscopic mechanism of relaxation. By employing state-of-the-art GPU simulations and nano-particle resolved colloidal experiments, we identify the elementary units of relaxation in deeply supercooled liquids. Focusing on the excitations of DF and cooperatively rearranging regions (CRRs) implied by the thermodynamic scenario, we find that several predictions of both hold well below the MCT crossover: for the elementary excitations, their density follows a Boltzmann law, and their timescales converge at low temperatures. For CRRs, the decrease in bulk configurational entropy is accompanied by the increase of their fractal dimension. While the timescale of excitations remains microscopic, that of CRRs tracks a timescale associated with dynamic heterogeneity, [Formula: see text]. This timescale separation of excitations and CRRs opens the possibility of accumulation of excitations giving rise to cooperative behaviour leading to CRRs.

3.
Proc Natl Acad Sci U S A ; 120(8): e2215585120, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36787353

ABSTRACT

Cellular organisms regulate electrolyte composition in the cytosol to optimize intracellular molecular interactions at the same time as balancing external osmotic pressure. While osmotic pressure can be tuned using multiple ionic, zwitterionic, and nonionic solutes, interactions between proteins and other macromolecules are sensitive to the precise composition of the medium. Nonetheless, the roles of individual ions and nonionic solutes in mediating cellular interactions remain relatively unexplored, and standard buffer solutions used in laboratory studies often contain only a few simple salts. Here, we report on model experiments investigating the combined effect of ionic and zwitterionic solutes on interaction forces across electrolytes, revealing a clear role for zwitterions in modifying interactions compared to simple salt solutions. First, we find that zwitterions act to disrupt water layering at interfaces, leading to smoothed interaction potentials. Second, we find that zwitterions strengthen electrostatic repulsions by enhancing effective surface charge. Third, zwitterions enhance the effective dielectric permittivity of the solution, and this "dielectricizer" effect extends the range of electrostatic repulsions compared to solutions without zwitterion present. The latter two effects are likely important in stabilizing proteins and other macromolecules when external osmotic and mechanical pressure are very high and simple ionic solutes alone would lead to collapse.

4.
Mol Metab ; 53: 101309, 2021 11.
Article in English | MEDLINE | ID: mdl-34303878

ABSTRACT

OBJECTIVE: The mechanistic target of rapamycin complex 1 (mTORC1) is dynamically regulated by fasting and feeding cycles in the liver to promote protein and lipid synthesis while suppressing autophagy. However, beyond these functions, the metabolic response of the liver to feeding and insulin signaling orchestrated by mTORC1 remains poorly defined. Here, we determine whether ATF4, a stress responsive transcription factor recently found to be independently regulated by mTORC1 signaling in proliferating cells, is responsive to hepatic mTORC1 signaling to alter hepatocyte metabolism. METHODS: ATF4 protein levels and expression of canonical gene targets were analyzed in the liver following fasting and physiological feeding in the presence or absence of the mTORC1 inhibitor, rapamycin. Primary hepatocytes from wild-type or liver-specific Atf4 knockout (LAtf4KO) mice were used to characterize the effects of insulin-stimulated mTORC1-ATF4 function on hepatocyte gene expression and metabolism. Both unbiased steady-state metabolomics and stable-isotope tracing methods were employed to define mTORC1 and ATF4-dependent metabolic changes. RNA-sequencing was used to determine global changes in feeding-induced transcripts in the livers of wild-type versus LAtf4KO mice. RESULTS: We demonstrate that ATF4 and its metabolic gene targets are stimulated by mTORC1 signaling in the liver, in a hepatocyte-intrinsic manner by insulin in response to feeding. While we demonstrate that de novo purine and pyrimidine synthesis is stimulated by insulin through mTORC1 signaling in primary hepatocytes, this regulation was independent of ATF4. Metabolomics and metabolite tracing studies revealed that insulin-mTORC1-ATF4 signaling stimulates pathways of nonessential amino acid synthesis in primary hepatocytes, including those of alanine, aspartate, methionine, and cysteine, but not serine. CONCLUSIONS: The results demonstrate that ATF4 is a novel metabolic effector of mTORC1 in the liver, extending the molecular consequences of feeding and insulin-induced mTORC1 signaling in this key metabolic tissue to the control of amino acid metabolism.


Subject(s)
Activating Transcription Factor 4/metabolism , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Activating Transcription Factor 4/deficiency , Animal Feed , Animals , Feeding Behavior , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Signal Transduction
5.
J Phys Condens Matter ; 33(45)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34034239

ABSTRACT

Colloidal gels constitute an important class of materials found in many contexts and with a wide range of applications. Yet as matter far from equilibrium, gels exhibit a variety of time-dependent behaviours, which can be perplexing, such as an increase in strength prior to catastrophic failure. Remarkably, such complex phenomena are faithfully captured by an extremely simple model-'sticky spheres'. Here we review progress in our understanding of colloidal gels made through the use of real space analysis and particle resolved studies. We consider the challenges of obtaining a suitable experimental system where the refractive index and density of the colloidal particles is matched to that of the solvent. We review work to obtain a particle-level mechanism for rigidity in gels and the evolution of our understanding of time-dependent behaviour, from early-time aggregation to ageing, before considering the response of colloidal gels to deformation and then move on to more complex systems of anisotropic particles and mixtures. Finally we note some more exotic materials with similar properties.

6.
Bio Protoc ; 11(7): e3975, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33889669

ABSTRACT

The Target of Rapamycin kinase Complex I (TORC1) is the master regulator of cell growth and metabolism in eukaryotes. In the presence of pro-growth hormones and abundant nutrients, TORC1 is active and drives protein, lipid, and nucleotide synthesis by phosphorylating a wide range of proteins. In contrast, when nitrogen and/or glucose levels fall, TORC1 is inhibited, causing the cell to switch from anabolic to catabolic metabolism, and eventually enter a quiescent state. In the budding yeast Saccharomyces cerevisiae, TORC1 inhibition triggers the movement of TORC1 from its position around the vacuole to a single focus/body on the edge of the vacuolar membrane. This relocalization depends on the activity of numerous key TORC1 regulators and thus analysis of TORC1 localization can be used to follow signaling through the TORC1 pathway. Here we provide a detailed protocol for measuring TORC1 (specifically, Kog1-YFP) relocalization/signaling using fluorescence microscopy. Emphasis is placed on procedures that ensure: (1) TORC1-bodies are identified (and counted) correctly despite their relatively low fluorescence and the accumulation of autofluorescent foci during glucose and nitrogen starvation; (2) Cells are kept in log-phase growth at the start of each experiment so that the dynamics of TORC1-body formation are monitored correctly; (3) The appropriate fluorescent tags are used to avoid examining mislocalized TORC1.

7.
Phys Rev E ; 102(3-1): 032609, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075940

ABSTRACT

Swimmers and self-propelled particles are physical models for the collective behavior and motility of a wide variety of living systems, such as bacteria colonies, bird flocks, and fish schools. Such artificial active materials are amenable to physical models which reveal the microscopic mechanisms underlying the collective behavior. Here we study colloids in a dc electric field. Our quasi-two-dimensional system of electrically driven particles exhibits a rich and exotic phase behavior exhibiting passive crystallites, motile crystallites, an active gas, and banding. Amongst these are two mesophases, reminiscent of systems with competing interactions. At low field strengths activity suppresses demixing, leading to motile crystallites. Meanwhile, at high field strengths, activity drives partial demixing to traveling bands. We parametrize a particulate simulation model which reproduces the experimentally observed phases.

8.
Phys Chem Chem Phys ; 22(36): 20253-20264, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966447

ABSTRACT

We report surface force balance measurements of the normal surface force and friction between two mica surfaces separated by a nanofilm of the deep eutectic solvent ethaline. Ethaline, a 1 : 2 mixture of choline chloride and ethylene glycol, was studied under dry conditions, under ambient conditions and with added water, revealing surface structural layers and quantised frictional response highly sensitive to water content, including regions of super-lubric behaviour under dry conditions and with added water. We also report exceptionally long-ranged electrostatic repulsion far in excess of that predicted by Debye-Hückel theory for a system with such high electrolyte content, consistent with previously reported observations of "underscreening" in ionic liquid and concentrated aqueous electrolyte systems [Smith et al., J. Phys. Chem. Lett., 2016, 7(12), 2157].

9.
J Colloid Interface Sci ; 579: 243-249, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32592989

ABSTRACT

HYPOTHESIS: To study molecular exchange between colloids requires the preparation of suitably labelled species. Deuterium isotopic labelling has been used to prepare two chemically identical yet isotopically distinguishable poly(lauryl methacrylate)-poly(methyl methacrylate) (PLMA-PMMA) diblock copolymer colloids by polymerisation-induced self-assembly (PISA) directly in an alkane solvent. Molecular exchange should be detectable by performing small-angle neutron scattering (SANS) measurements on the dispersions. EXPERIMENTS: SANS measurements were performed on fully hydrogenous PLMA39-PMMA57 and deuterated core PLMA39-P(MMA-d8)57 colloids. They were mixed in equal amounts and heated to determine if molecular exchange occurred. PISA syntheses are often thermally initiated, and diblock copolymers self-assemble at elevated temperature, making this an important parameter to study. Experimental data for the mixture were compared to predicted curves for exchanged and non-exchanged colloids. FINDINGS: The scattering of a mixture of fully hydrogenous and deuterated core copolymers does not disappear upon molecular exchange, due to the remaining contrast between the stabiliser and the core and solvent even after the cores fully exchange. By simultaneously fitting the SANS data from dispersions before mixing and using these parameters to constrain fitting the SANS data of mixtures, the molecular exchange between diblock copolymer micelles upon heating is clearly observed.

10.
Soft Matter ; 16(15): 3657-3668, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32227048

ABSTRACT

Sterically-stabilized diblock copolymer nanoparticles (a.k.a. micelles) are prepared directly in non-polar media via polymerization-induced self-assembly (PISA). More specifically, a poly(lauryl methacrylate) chain transfer agent is chain-extended via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of methyl methacrylate (MMA) to form sterically-stabilized spheres at 20% w/w solids in n-dodecane at 90 °C. Both fully hydrogenous (PLMA39-PMMA55 and PLMA39-PMMA94) and core-deuterated (PLMA39-d8PMMA57 and PLMA39-d8PMMA96) spherical nanoparticles with mean core diameters of approximately 20 nm were prepared using this protocol. After diluting each dispersion in turn to 1.0% w/w with n-dodecane, small-angle X-ray scattering studies confirmed essentially no change in spherical nanoparticle diameter after thermal annealing at 150 °C. Time-resolved small angle neutron scattering was used to examine whether copolymer chain exchange occurs between such nanoparticles at elevated temperatures. Copolymer chain exchange for a binary mixture of PLMA39-PMMA55 and PLMA39-d8PMMA57 nanoparticles produced hybrid (mixed) cores containing both PMMA55 and d8PMMA57 blocks within 3 min at 150 °C. In contrast, a binary mixture of PLMA39-PMMA94 and PLMA39-d8PMMA96 nanoparticles required 8 min at this temperature before no further reduction in neutron scattering intensity could be observed. These observations suggest that the rate of copolymer chain exchange depends on the degree of polymerization of the core-forming block. Relatively slow copolymer chain exchange was also observed at 80 °C, which is below the Tg of the core-forming PMMA block as determined by DSC studies. These observations confirm rapid exchange of individual copolymer chains between sterically-stabilized nanoparticles at elevated temperature. The implications of these findings are briefly discussed in the context of PISA, which is a powerful technique for the synthesis of sterically-stabilized nanoparticles.

11.
Langmuir ; 36(8): 2071-2081, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32008323

ABSTRACT

Hard-sphere particles in nonpolar solvents are an essential tool for colloid scientists. Sterically stabilized poly(methyl methacrylate) (PMMA) particles have long been used as the exemplary hard-sphere system. However, neither the particles themselves nor the poly(12-hydroxystearic acid) (PHSA) stabilizer necessary to prevent aggregation in nonpolar solvents are commercially available. To counter this, several alternatives have been proposed. In recent years, there has been an increased interest in poly(dimethylsiloxane) (PDMS) stabilizers as a commercially available alternative to PHSA, yet the structure of particles made in this way is not as well understood as those produced using PHSA. In this work, we employ small-angle neutron scattering to determine the internal structure of PDMS-stabilized PMMA particles, synthesized with and without an additional crosslinking agent. We report data consistent with a homogeneous PMMA core with a linearly decaying PDMS shell. The thickness of the shell was in excess of 50 nm, thicker than the PHSA layer typically used to stabilize PMMA but consistent with reports of the layer thickness for similar molecular weight PDMS at planar surfaces. We also show that the amount of the hydrogenous material in the particle core of the crosslinked particles notably exceeds the amount of added ethylene glycol dimethacrylate crosslinker, suggesting some entrapment of the PDMS stabilizer in the PMMA matrix.

12.
Proc Natl Acad Sci U S A ; 116(51): 25418-25423, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31801880

ABSTRACT

Hydrocarbon films confined between smooth mica surfaces have long provided an experimental playground for model studies of structure and dynamics of confined liquids. However, fundamental questions regarding the phase behavior and shear properties in this simple system remain unsolved. With ultrasensitive resolution in film thickness and shear stress, and control over the crystallographic alignment of the confining surfaces, we here investigate the shear forces transmitted across nanoscale films of dodecane down to a single molecular layer. We resolve the conditions under which liquid-solid phase transitions occur and explain friction coefficients spanning several orders of magnitude. We find that commensurate surface alignment and presence of water at the interfaces each lead to moderate or high friction, whereas friction coefficients down to [Formula: see text] are observed for a single molecular layer of dodecane trapped between crystallographically misaligned dry surfaces. This ultralow friction is attributed to sliding at the incommensurate interface between one of the mica surfaces and the laterally ordered solid molecular film, reconciling previous interpretations.

13.
Proc Math Phys Eng Sci ; 475(2226): 20180763, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31293354

ABSTRACT

Refractive index matched particles serve as essential model systems for colloid scientists, providing nearly hard spheres to explore structure and dynamics. The poly(methyl methacrylate) latexes typically used are often refractive index matched by dispersing them in binary solvent mixtures, but this can lead to undesirable changes, such as particle charging or swelling. To avoid these shortcomings, we have synthesized refractive index matched colloids using polymerization-induced self-assembly (PISA) rather than as polymer latexes. The crucial difference is that these diblock copolymer nanoparticles consist of a single core-forming polymer in a single non-ionizable solvent. The diblock copolymer chosen was poly(stearyl methacrylate)-poly(2,2,2-trifluoroethyl methacrylate) (PSMA-PTFEMA), which self-assembles to form PTFEMA core spheres in n-alkanes. By monitoring scattered light intensity, n-tetradecane was found to be the optimal solvent for matching the refractive index of such nanoparticles. As expected for PISA syntheses, the diameter of the colloids can be controlled by varying the PTFEMA degree of polymerization. Concentrated dispersions were prepared, and the diffusion of the PSMA-PTFEMA nanoparticles as a function of volume fraction was measured. These diblock copolymer nanoparticles are a promising new system of transparent spheres for future colloidal studies.

14.
Nat Commun ; 9(1): 3272, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115905

ABSTRACT

Glasses are among the most widely used of everyday materials, yet the process by which a liquid's viscosity increases by 14 decades to become a glass remains unclear, as often contradictory theories provide equally good descriptions of the available data. Knowledge of emergent lengthscales and higher-order structure could help resolve this, but this requires time-resolved measurements of dense particle coordinates-previously only obtained over a limited time interval. Here we present an experimental study of a model colloidal system over a dynamic window significantly larger than previous measurements, revealing structural ordering more strongly linked to dynamics than previously found. Furthermore we find that immobile regions and domains of local structure grow concurrently with density, and that these regions have low configurational entropy. We thus show that local structure plays an important role at deep supercooling, consistent with a thermodynamic interpretation of the glass transition rather than a principally dynamic description.

15.
J Phys Condens Matter ; 30(9): 094003, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29339569

ABSTRACT

A quasi two-dimensional colloidal suspension is studied under the influence of immobilisation (pinning) of a random fraction of its particles. We introduce a novel experimental method to perform random pinning and, with the support of numerical simulation, we find that increasing the pinning concentration smoothly arrests the system, with a cross-over from a regime of high mobility and high entropy to a regime of low mobility and low entropy. At the local level, we study fluctuations in area fraction and concentration of pins and map them to entropic structural signatures and local mobility, obtaining a measure for the local entropic fluctuations of the experimental system.

16.
Soft Matter ; 14(3): 331-343, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29164218

ABSTRACT

Individual colloids often carry a charge as a result of the dissociation (or adsorption) of weakly-ionized surface groups. The magnitude depends on the precise chemical environment surrounding a particle, which in a concentrated dispersion is a function of the colloid packing fraction η. Theoretical studies have suggested that the effective charge Zeff in regulated systems could, in general, decrease with increasing η. We test this hypothesis for nonpolar dispersions by determining Zeff(η) over a wide range of packing fractions (10-5 ≤ η ≤ 0.3) using a combination of small-angle X-ray scattering and electrophoretic mobility measurements. All dispersions remain entirely in the fluid phase regime. We find a complex dependence of the particle charge as a function of the packing fraction, with Zeff initially decreasing at low concentrations before finally increasing at high η. We attribute the non-monotonic density dependence to a crossover from concentration-independent screening at low η, to a high packing fraction regime in which counterions outnumber salt ions and electrostatic screening becomes η-dependent. The efficiency of charge stabilization at high concentrations may explain the unusually high stability of concentrated nanoparticle dispersions which has been reported.

17.
Soft Matter ; 13(33): 5535-5542, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28795175

ABSTRACT

Here X-ray reflectivity has been used to determine the structure of liquid crystal monolayers for different cyanobiphenyl homologues supported on aqueous solutions of two different salt species. Sodium iodide induces homeotropic ordering for all of the monolayer forming liquid crystal homologues studied here, and forms a Stern layer of iodide ions at the liquid crystal cyano headgroup, similar to the case of lipids or surfactants supported on electrolyte solutions. The liquid crystal headgroups were also found to penetrate into the water surface when binding with iodide ions. Sodium bromide, however, does not form the same localisation of ions close to a liquid crystal monolayer, and instead appears to produce no noticeable change in the scattering length density of the liquid crystal monolayer compared to pure water. However, on further compression the X-ray reflectivity dramatically changes, revealing the emergence of the so-called "trilayer" structure for 5CB and 8CB. This transition occurs at a lower areal density for sodium bromide than for pure water, and unlike for the uncompressed film, a layer of bromide ions was found at the trilayer-water interface.

18.
Phys Rev Lett ; 119(2): 028004, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753337

ABSTRACT

Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.

19.
Soft Matter ; 13(17): 3230-3239, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28401216

ABSTRACT

We consider the sedimentation of a colloidal gel under confinement in the direction of gravity. The confinement allows us to compare directly experiments and computer simulations, for the same system size in the vertical direction. The confinement also leads to qualitatively different behaviour compared to bulk systems: in large systems gelation suppresses sedimentation, but for small systems sedimentation is enhanced relative to non-gelling suspensions, although the rate of sedimentation is reduced when the strength of the attraction between the colloids is strong. We map interaction parameters between a model experimental system (observed in real space) and computer simulations. Remarkably, we find that when simulating the system using Brownian dynamics in which hydrodynamic interactions between the particles are neglected, we find that sedimentation occurs on the same timescale as the experiments. An analysis of local structure in the simulations showed similar behaviour to gelation in the absence of gravity.

20.
Cell ; 165(1): 15-17, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27015302

ABSTRACT

The activation state of mTORC1, a master regulator of cell growth, is particularly sensitive to changes in the intracellular levels of the amino acid arginine, but the sensing mechanisms are poorly understood. In this issue of Cell, Chantranupong et al. identify CASTOR1 as a direct arginine sensor that acts through the GATOR2 complex to regulate mTORC1.


Subject(s)
Amino Acids/metabolism , Signal Transduction , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...