Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Hum Mutat ; 41(11): 1906-1917, 2020 11.
Article in English | MEDLINE | ID: mdl-32939943

ABSTRACT

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.


Subject(s)
Craniofacial Abnormalities/genetics , Hirschsprung Disease/genetics , Nerve Tissue Proteins/genetics , Adult , Child , Codon, Nonsense , Female , Genetic Association Studies , HEK293 Cells , Humans , Male , Mutation, Missense , Polymorphism, Single Nucleotide
2.
Eur J Hum Genet ; 27(6): 919-927, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30737479

ABSTRACT

Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.


Subject(s)
Glycogen Storage Disease Type II/genetics , Mucopolysaccharidosis I/genetics , Polymorphism, Single Nucleotide , Uniparental Disomy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male
3.
J Pediatr Gastroenterol Nutr ; 65(1): e5-e15, 2017 07.
Article in English | MEDLINE | ID: mdl-28644354

ABSTRACT

OBJECTIVE: Monogenic defects in the interleukin-10 (IL-10) pathway are extremely rare and cause infantile-onset inflammatory bowel disease (IBD)-like pathology. Understanding how immune responses are dysregulated in monogenic IBD-like diseases can provide valuable insight in "classical" IBD pathogenesis. Here, we studied long-term immune cell development and function in an adolescent IL-10 receptor (IL10RA)-deficient patient who presented in infancy with severe colitis and fistulizing perianal disease and is currently treated with immune suppressants. METHODS: Biomaterial was collected from the IL10RA-deficient patient, pediatric patients with IBD, and healthy controls. The frequency and phenotype of immune cells were determined in peripheral blood and intestinal biopsies by flow cytometry and immunohistochemistry. Functional changes in monocyte-derived dendritic cells and T cells were assessed by in vitro activation assays. RESULTS: The IL10RA-deficient immune system developed normally with respect to numbers and phenotype of circulating immune cells. Despite normal co-stimulatory molecule expression, bacterial lipopolysaccharide-stimulated monocyte-derived dendritic cells from the IL10RA-deficient patient released increased amounts of tumor necrosis factor α compared to healthy controls. Upon T-cell receptor ligation, IL10RA-deficient peripheral blood mononuclear cells released increased amounts of T-cell cytokines interferon γ and IL-17 agreeing with high numbers of T-bet and IL-17 cells in intestinal biopsies taken at disease onset. In vitro, the immunosuppressive drug thalidomide used to treat the patient's decreased peripheral blood mononuclear cell-derived tumor necrosis factor production. CONCLUSIONS: With time and during immunosuppressive treatment the IL10RA-deficient immune system develops relatively normally. Upon activation, IL-10 is crucial for controlling excessive inflammatory cytokine release by dendritic cells and preventing interferon γ and IL-17-mediated T-cell responses.


Subject(s)
Adaptive Immunity/physiology , Dendritic Cells/metabolism , Immunity, Innate/physiology , Inflammatory Bowel Diseases/immunology , Interleukin-10 Receptor alpha Subunit/deficiency , T-Lymphocyte Subsets/metabolism , Adolescent , Adult , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Codon, Nonsense , Female , Frameshift Mutation , Genetic Markers , Humans , Infant , Inflammatory Bowel Diseases/genetics , Interleukin-10 Receptor alpha Subunit/genetics , Male , Middle Aged
6.
BMC Med Genet ; 16: 10, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25927202

ABSTRACT

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene. METHODS: Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods. RESULTS: We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses. CONCLUSIONS: Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.


Subject(s)
DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Mutation , Tumor Suppressor Proteins/genetics , Adolescent , Child , Genetic Loci/genetics , Genomics , Humans , Middle Aged , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein
7.
Genet Med ; 17(11): 843-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25719457

ABSTRACT

Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as "COL4A1 mutation-related disorders." Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.


Subject(s)
Collagen Type IV/genetics , Genetic Association Studies , Mutation , Phenotype , Alleles , Anterior Eye Segment/abnormalities , Brain/pathology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/genetics , Cohort Studies , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Diseases, Hereditary , Family , Gene Order , Genetic Loci , Genotype , Humans , Leukomalacia, Periventricular/diagnosis , Leukomalacia, Periventricular/genetics , Magnetic Resonance Imaging/methods , Pedigree , Porencephaly/diagnosis , Porencephaly/genetics
8.
Eur J Hum Genet ; 23(9): 1142-50, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25626705

ABSTRACT

Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found 'no causal variant', thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of 'greediness' to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care.


Subject(s)
Cardiomyopathies/diagnosis , Genetic Testing/standards , Genome, Human , High-Throughput Nucleotide Sequencing/standards , Mutation , Calcium-Binding Proteins/genetics , Cardiac Myosins/genetics , Cardiomyopathies/genetics , Carrier Proteins/genetics , Exome , Gene Expression , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Informed Consent/legislation & jurisprudence , Laboratory Proficiency Testing/statistics & numerical data , MAP Kinase Kinase Kinases/genetics , Myosin Heavy Chains/genetics , Netherlands , Protein Serine-Threonine Kinases
10.
Hum Mutat ; 36(1): 57-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25243733

ABSTRACT

Identification of pathogenic variants in monogenic diseases is an important aspect of diagnosis, genetic counseling, and prediction of disease severity. Pathogenic mechanisms involved include changes in gene expression, RNA processing, and protein translation. Variants affecting pre-mRNA splicing are difficult to predict due to the complex mechanism of splicing regulation. A generic approach to systematically detect and characterize effects of sequence variants on splicing would improve current diagnostic practice. Here, it is shown that such approach is feasible by combining flanking exon RT-PCR, sequence analysis of PCR products, and exon-internal quantitative RT-PCR for all coding exons. Application of this approach to one novel and six previously published variants in the acid-alpha glucosidase (GAA) gene causing Pompe disease enabled detection of a total of 11 novel splicing events. Aberrant splicing included cryptic splice-site usage, intron retention, and exon skipping. Importantly, the extent of leaky wild-type splicing correlated with disease onset and severity. These results indicate that this approach enables sensitive detection and in-depth characterization of variants affecting splicing, many of which are still unrecognized or poorly understood. The approach is generic and should be adaptable for application to other monogenic diseases to aid in improved diagnostics.


Subject(s)
Glycogen Storage Disease Type II/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , alpha-Glucosidases/genetics , Adolescent , Adult , Child , Exons , Humans , Infant , Infant, Newborn , Introns , Middle Aged , Mutation , RNA Splicing
11.
PLoS One ; 9(4): e93940, 2014.
Article in English | MEDLINE | ID: mdl-24714658

ABSTRACT

The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction.


Subject(s)
Carrier Proteins/genetics , Tuberous Sclerosis/genetics , Tumor Suppressor Proteins/genetics , Carrier Proteins/metabolism , Exons , Humans , Intracellular Signaling Peptides and Proteins , Mutation , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
12.
Am J Med Genet A ; 164A(1): 113-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24243761

ABSTRACT

So far only mutations in the filamin A gene (FLNA) have been identified as causing familial mitral valve prolapse (MVP). Previous studies have linked dysregulation of the transforming growth factor beta (TGF-ß) cytokine family to MVP. We investigated whether mutations in the TGF-ß receptors genes type I (TGFBR1) and II (TGFBR2) underlie isolated familial MVP cases. Eight families with isolated familial MVP were evaluated clinically and genetically. Ventricular arrhythmias were present in five of the eight families and sudden cardiac death occurred in six patients. Tissue obtained during mitral valve surgery or autopsy was available for histological examination in six cases; all demonstrated myxomatous degeneration. A previously described FLNA missense mutation (p.G288R) was identified in one large family, but no mutations were discovered in TGFBR1 or TGFBR2. An FLNA missense mutation was identified in one family but we found no TGFBR1 or TGFBR2 mutations. Our results suggest that TGFBR1 and TGFBR2 mutations do not play a major role in isolated myxomatous valve dystrophy. Screening for FLNA mutations is recommended in familial myxomatous valvular dystrophy, particularly if X-linked inheritance is suspected.


Subject(s)
Filamins/genetics , Mitral Valve Prolapse/diagnosis , Mitral Valve Prolapse/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Adolescent , Adult , Female , Genotype , Humans , Male , Middle Aged , Mitral Valve/pathology , Mutation , Pedigree , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Young Adult
13.
Am J Med Genet A ; 161A(9): 2376-84, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873601

ABSTRACT

Mutations in FLNA (Filamin A, OMIM 300017) cause X-linked periventricular nodular heterotopia (XL-PNH). XL-PNH-associated mutations are considered lethal in hemizygous males. However, a few males with unusual mutations (including distal truncating and hypomorphic missense mutations), and somatic mosaicism have been reported to survive past infancy. Two brothers had an atypical presentation with failure to thrive and distinct facial appearance including hypertelorism. Evaluations of these brothers and their affected cousin showed systemic involvement including severe intestinal malfunction, malrotation, congenital short bowel, PNH, pyloric stenosis, wandering spleen, patent ductus arteriosus, atrial septal defect, inguinal hernia, and vesicoureteral reflux. The unanticipated finding of PNH led to FLNA testing and subsequent identification of a novel no-stop FLNA mutation (c.7941_7942delCT, p.(*2648Serext*100)). Western blotting and qRT-PCR of patients' fibroblasts showed diminished levels of protein and mRNA. This FLNA mutation, the most distal reported so far, causes in females classical XL-PNH, but in males an unusual, multi-organ phenotype, providing a unique insight into the FLNA-associated phenotypes.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Filamins/genetics , Mutation, Missense , Base Sequence , Brain/pathology , Facies , Female , Genotype , Humans , Infant , Magnetic Resonance Imaging , Male , Pedigree , Periventricular Nodular Heterotopia/diagnosis , Periventricular Nodular Heterotopia/genetics , Phenotype , Radiography , Spleen/diagnostic imaging , Spleen/pathology
14.
Eur J Paediatr Neurol ; 17(6): 666-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23755938

ABSTRACT

BACKGROUND: The BIG2 protein, coded by ARFGEF2 indirectly assists neuronal proliferation and migration during cortical development. Mutations in ARFGEF2 have been reported as a rare cause of periventricular heterotopia. METHODS: The presence of periventricular heterotopia, acquired microcephaly and suspected recessive inheritance led to mutation analysis of ARFGEF2 in two affected siblings and their healthy consanguineous parents, after mutations in FLNA had been ruled out. RESULTS: A homozygous c.242_249delins7 (p.Pro81fs) mutation in exon 3 of ARFGEF2 was identified in the siblings. The alteration is a combination of 2 missense mutations (c.242C > A and c.247G > T) and a frameshift mutation (c.249delA) resulting in a premature stop codon. The clinical phenotype was characterized by dystonic quadriplegia, marked developmental delay, obstructive cardiomyopathy, recurrent infections and feeding difficulties. Degenerative features included early regression, acquired microcephaly and cerebral atrophy. Brain MRI revealed bilateral periventricular heterotopia, small corpus callosum, cerebral and hippocampal atrophy and hyperintensity in the putamen. CONCLUSION: Mutations in ARFGEF2 can be anticipated based on characteristic clinical and imaging features.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Mutation, Missense/genetics , Periventricular Nodular Heterotopia/genetics , Animals , Brain/pathology , DNA Mutational Analysis , Family Health , Humans , Infant , Magnetic Resonance Imaging , Male , Phenotype
15.
Orphanet J Rare Dis ; 8: 51, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23557332

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome; MPS VI) is an autosomal recessive lysosomal storage disorder in which deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B; ARSB) leads to the storage of glycosaminoglycans (GAGs) in connective tissue. The genotype-phenotype correlation has been addressed in several publications but the picture is not complete. Since 2007, enzyme-replacement therapy (ERT) has been available for patients with MPS VI in the Netherlands. The purpose of our study was to learn more about the genotype-phenotype correlations in MPS VI and the antibody response to ERT with galsulfase (recombinant human arylsulfatase B). METHODS: We identified ARSB mutations in 12 patients and used site-directed mutagenesis to study their effect. Antibody levels to galsulfase were measured using ELISA and a semi-quantitative immunoprecipitation method. We assessed the in vitro inhibitory effect of antibodies on galsulfase uptake and their effect on clinical outcome. RESULTS: Five patients had a rapidly progressive phenotype and seven a slowly progressive phenotype. In total 9 pathogenic mutations were identified including 4 novel mutations (N301K, V332G, A237D, and c.1142 + 2 T > C) together composing 8 pathogenic genotypes. Most mutations appeared not to affect the synthesis of ARSB (66 kD precursor), but to hamper its maturation (43 kD ARSB). Disease severity was correlated with urinary GAG excretion. All patients developed antibodies to galsulfase within 26 weeks of treatment. It was demonstrated that these antibodies can inhibit the uptake of galsulfase in vitro. CONCLUSIONS: The clinical phenotypes and the observed defects in the biosynthesis of ARSB show that some of the mutations that we identified are clearly more severe than others. Patients receiving galsulfase as enzyme-replacement therapy can develop antibodies towards the therapeutic protein. Though most titers are modest, they can exceed a level at which they potentially affect the clinical outcome of enzyme-replacement therapy.


Subject(s)
Antibody Formation/immunology , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/pathology , N-Acetylgalactosamine-4-Sulfatase/immunology , Adolescent , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Genotype , Humans , Immunoprecipitation , Infant , Male , Mucopolysaccharidosis VI/immunology , Mutagenesis, Site-Directed , Phenotype , Recombinant Proteins/immunology
16.
Hum Mutat ; 34(1): 167-75, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22903760

ABSTRACT

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 genes. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a complex that inhibits the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Here, we investigate the effects of 78 TSC2 variants identified in individuals suspected of TSC, on the function of the TSC1-TSC2 complex. According to our functional assessment, 40 variants disrupted the TSC1-TSC2-dependent inhibition of TORC1. We classified 34 of these as pathogenic, three as probably pathogenic and three as possibly pathogenic. In one case, a likely effect on splicing as well as an effect on function was noted. In 15 cases, our functional assessment did not agree with the predictions of the SIFT amino acid substitution analysis software. Our data support the notion that different, nonterminating TSC2 mutations can have distinct effects on TSC1-TSC2 function, and therefore, on TSC pathology.


Subject(s)
Mutation , Signal Transduction/genetics , Tuberous Sclerosis/genetics , Tumor Suppressor Proteins/genetics , Amino Acid Substitution , HEK293 Cells , Humans , Immunoblotting , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transfection , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
17.
BMC Biochem ; 13: 18, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23006675

ABSTRACT

BACKGROUND: Mutations to the TSC1 and TSC2 genes cause the disease tuberous sclerosis complex. The TSC1 and TSC2 gene products form a protein complex that integrates multiple metabolic signals to regulate the activity of the target of rapamycin (TOR) complex 1 (TORC1) and thereby control cell growth. Here we investigate the quaternary structure of the TSC1-TSC2 complex by gel filtration and coimmunoprecipitation. RESULTS: TSC1 and TSC2 co-eluted in high molecular weight fractions by gel filtration. Coimmunoprecipitation of distinct tagged TSC1 and TSC2 isoforms demonstrated that TSC1-TSC2 complexes contain multiple TSC1 and TSC2 subunits. CONCLUSIONS: TSC1 and TSC2 interact to form large complexes containing multiple TSC1 and TSC2 subunits.


Subject(s)
Tumor Suppressor Proteins/metabolism , Chromatography, Gel , Epitopes , HEK293 Cells , Humans , Immunoprecipitation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Quaternary , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/chemistry
18.
Genet Test Mol Biomarkers ; 16(9): 1015-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22691228

ABSTRACT

AIMS: Most patients (98%) with Friedreich's ataxia (FRDA) are homozygous for the GAA repeat expansion in FXN. Only a few compound heterozygous patients with an expanded repeat on one allele and a point mutation or an intragenic FXN deletion on the other allele are described. In a minority of the patients only a heterozygous pattern of the repeat expansion can be detected. Using array analysis after GAA repeat expansion testing, we identified a FRDA patient who is compound heterozygous for an expanded GAA repeat and a complete FXN deletion. Since not only repeat expansions and point mutations, but also large rearrangements can be the underlying cause of FRDA, a quantitative test should also be performed in case a patient shows only one allele with an expanded GAA repeat in FXN.


Subject(s)
Friedreich Ataxia/genetics , Gene Deletion , Heterozygote , Iron-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Female , Humans , Male , Pedigree , Frataxin
19.
Hum Mutat ; 33(8): 1161-5, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22644586

ABSTRACT

Pompe disease is an autosomal recessive lysosomal glycogen storage disorder, characterized by progressive muscle weakness. Deficiency of acid α-glucosidase (EC; 3.2.1.20/3) can be caused by numerous pathogenic variants in the GAA gene. The Pompe Disease Mutation Database at http://www.pompecenter.nl aims to list all variants and their effect. This update reports on 94 variants. We examined 35 novel and 34 known mutations by site-directed mutagenesis and transient expression in COS-7 cells or HEK293T cells. Each of these mutations was given a severity rating using a previously published system, based on the level of acid α-glucosidase activity in medium and transfected cells and on the quantity and quality of the different molecular mass species in the posttranslational modification and transport of acid α-glucosidase. This approach enabled to classify 55 missense mutations as pathogenic and 13 as likely nonpathogenic. Based on their nature and the use of in silico analysis (Alamut® software), 12 of the additional 25 novel mutations were predicted to be pathogenic including 4 splicing mutations, 6 mutations leading to frameshift, and 2 point mutations causing stop codons. Seven of the additional mutations were considered nonpathogenic (4 silent and 3 occurring in intron regions), and 6 are still under investigation.


Subject(s)
Databases, Genetic , Glycogen Storage Disease Type II/genetics , alpha-Glucosidases/genetics , Genetic Predisposition to Disease , Humans , Mutation
20.
Am J Med Genet A ; 158A(6): 1472-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22585566

ABSTRACT

Mutations in the ARX gene, at Xp22.3, cause several disorders, including infantile spasms, X-linked lissencephaly with abnormal genitalia (XLAG), callosal agenesis and isolated intellectual disability. Genotype/phenotype studies suggested that polyalanine tract expansion is associated with non-malformative phenotypes, while missense and nonsense mutations cause cerebral malformations, however, patients with structural normal brain and missense mutations have been reported. We report on a male patient born with cleft lip and palate who presented with infantile spasms and hemiplegia. MRI showed agenesis of corpus callosum (ACC), an interhemispheric cyst, periventricular nodular heterotopia (PVNH), and extensive left frontal polymicrogyria (PMG). Sequencing of the ARX gene in the patient identified a six basepair insertion (c.335ins6, exon 2). The insertion leads to a two-residue expansion of the first polyalanine tract and was described previously in a family with non-syndromic X-linked mental retardation. To our knowledge, ARX mutation causing PMG and PVNH is unique, but the spasms and ACC are common in ARX mutations. Clinicians should be aware of the broad clinical range of ARX mutations, and further studies are necessary to investigate the association with PMG and PVNH and to identify possible modifying factors.


Subject(s)
Homeodomain Proteins/genetics , Malformations of Cortical Development/genetics , Mutation , Periventricular Nodular Heterotopia/genetics , Transcription Factors/genetics , Facies , Heterozygote , Humans , Infant , Karyotype , Male , Malformations of Cortical Development/diagnosis , Mutagenesis, Insertional , Neuroimaging , Periventricular Nodular Heterotopia/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...