Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Genetics ; 226(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38386896

ABSTRACT

The genetic architecture of trait variance has long been of interest in genetics and evolution. One of the earliest attempts to understand this architecture was presented in Lerner's Genetic Homeostasis (1954). Lerner proposed that heterozygotes should be better able to tolerate environmental perturbations because of functional differences between the alleles at a given locus, with each allele optimal for slightly different environments. This greater robustness to environmental variance, he argued, would result in smaller trait variance for heterozygotes. The evidence for Lerner's hypothesis has been inconclusive. To address this question using modern genomic methods, we mapped loci associated with differences in trait variance (vQTL) on 1,101 individuals from the F34 of an advanced intercross between LG/J and SM/J mice. We also mapped epistatic interactions for these vQTL in order to understand the influence of epistasis for the architecture of trait variance. We did not find evidence supporting Lerner's hypothesis, that heterozygotes tend to have smaller trait variances than homozygotes. We further show that the effects of most mapped loci on trait variance are produced by epistasis affecting trait means and that those epistatic effects account for about a half of the differences in genotypic-specific trait variances. Finally, we propose a model where the different interactions between the additive and dominance effects of the vQTL and their epistatic partners can explain Lerner's original observations but can also be extended to include other conditions where heterozygotes are not the least variable genotype.


Subject(s)
Epistasis, Genetic , Models, Genetic , Mice , Male , Animals , Phenotype , Genotype , Mice, Inbred Strains , Heterozygote , Homozygote
2.
Anat Rec (Hoboken) ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409943

ABSTRACT

Craniosynostosis is a common yet complex birth defect, characterized by premature fusion of the cranial sutures that can be syndromic or nonsyndromic. With over 180 syndromic associations, reaching genetic diagnoses and understanding variations in underlying cellular mechanisms remains a challenge. Variants of FGFR2 are highly associated with craniosynostosis and warrant further investigation. Using the missense mutation FGFR2W290R , an effective mouse model of Crouzon syndrome, craniofacial features were analyzed using geometric morphometrics across developmental time (E10.5-adulthood, n = 665 total). Given the interrelationship between the cranial vault and basicranium in craniosynostosis patients, the basicranium and synchondroses were analyzed in perinates. Embryonic time points showed minimal significant shape differences. However, hetero- and homozygous mutant perinates and adults showed significant differences in shape and size of the cranial vault, face, and basicranium, which were associated with cranial doming and shortening of the basicranium and skull. Although there were also significant shape and size differences associated with the basicranial bones and clear reductions in basicranial ossification in cleared whole-mount samples, there were no significant alterations in chondrocyte cell shape, size, or orientation along the spheno-occipital synchondrosis. Finally, shape differences in the cranial vault and basicranium were interrelated at perinatal stages. These results point toward the possibility that facial shape phenotypes in craniosynostosis may result in part from pleiotropic effects of the causative mutations rather than only from the secondary consequences of the sutural defects, indicating a novel direction of research that may shed light on the etiology of the broad changes in craniofacial morphology observed in craniosynostosis syndromes.

3.
Am J Hum Genet ; 111(1): 39-47, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181734

ABSTRACT

Craniofacial phenotyping is critical for both syndrome delineation and diagnosis because craniofacial abnormalities occur in 30% of characterized genetic syndromes. Clinical reports, textbooks, and available software tools typically provide two-dimensional, static images and illustrations of the characteristic phenotypes of genetic syndromes. In this work, we provide an interactive web application that provides three-dimensional, dynamic visualizations for the characteristic craniofacial effects of 95 syndromes. Users can visualize syndrome facial appearance estimates quantified from data and easily compare craniofacial phenotypes of different syndromes. Our application also provides a map of morphological similarity between a target syndrome and other syndromes. Finally, users can upload 3D facial scans of individuals and compare them to our syndrome atlas estimates. In summary, we provide an interactive reference for the craniofacial phenotypes of syndromes that allows for precise, individual-specific comparisons of dysmorphology.


Subject(s)
Face , Software , Humans , Facies , Phenotype , Syndrome
4.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106188

ABSTRACT

Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples showed craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing new insights into the genetic intersection of complex traits and Mendelian disorders.

6.
Commun Biol ; 6(1): 897, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652977

ABSTRACT

Adaptive evolution may be influenced by canalization, the buffering of developmental processes from environmental and genetic perturbations, but how this occurs is poorly understood. Here, we explore how gene expression variability evolves in diverging and hybridizing populations, by focusing on the Arctic charr (Salvelinus alpinus) of Thingvallavatn, a classic case of divergence between feeding habitats. We report distinct profiles of gene expression variance for both coding RNAs and microRNAs between the offspring of two contrasting morphs (benthic/limnetic) and their hybrids reared in common conditions and sampled at two key points of cranial development. Gene expression variance in the hybrids is substantially affected by maternal effects, and many genes show biased expression variance toward the limnetic morph. This suggests that canalization, as inferred by gene expression variance, can rapidly diverge in sympatry through multiple gene pathways, which are associated with dominance patterns possibly biasing evolutionary trajectories and mitigating the effects of hybridization on adaptive evolution.


Subject(s)
Hybridization, Genetic , MicroRNAs , Maternal Inheritance , Sympatry , Gene Expression
7.
bioRxiv ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398168

ABSTRACT

Classification is a fundamental task in biology used to assign members to a class. While linear discriminant functions have long been effective, advances in phenotypic data collection are yielding increasingly high-dimensional datasets with more classes, unequal class covariances, and non-linear distributions. Numerous studies have deployed machine learning techniques to classify such distributions, but they are often restricted to a particular organism, a limited set of algorithms, and/or a specific classification task. In addition, the utility of ensemble learning or the strategic combination of models has not been fully explored.We performed a meta-analysis of 33 algorithms across 20 datasets containing over 20,000 high-dimensional shape phenotypes using an ensemble learning framework. Both binary (e.g., sex, environment) and multi-class (e.g., species, genotype, population) classification tasks were considered. The ensemble workflow contains functions for preprocessing, training individual learners and ensembles, and model evaluation. We evaluated algorithm performance within and among datasets. Furthermore, we quantified the extent to which various dataset and phenotypic properties impact performance.We found that discriminant analysis variants and neural networks were the most accurate base learners on average. However, their performance varied substantially between datasets. Ensemble models achieved the highest performance on average, both within and among datasets, increasing average accuracy by up to 3% over the top base learner. Higher class R2 values, mean class shape distances, and between- vs. within-class variances were positively associated with performance, whereas higher class covariance distances were negatively associated. Class balance and total sample size were not predictive.Learning-based classification is a complex task driven by many hyperparameters. We demonstrate that selecting and optimizing an algorithm based on the results of another study is a flawed strategy. Ensemble models instead offer a flexible approach that is data agnostic and exceptionally accurate. By assessing the impact of various dataset and phenotypic properties on classification performance, we also offer potential explanations for variation in performance. Researchers interested in maximizing performance stand to benefit from the simplicity and effectiveness of our approach made accessible via the R package pheble.

9.
J Vis Exp ; (195)2023 May 19.
Article in English | MEDLINE | ID: mdl-37318260

ABSTRACT

Neuroimages are a valuable tool for studying brain morphology in experiments using animal models. Magnetic resonance imaging (MRI) has become the standard method for soft tissues, although its low spatial resolution poses some limits for small animals. Here, we describe a protocol for obtaining high-resolution three-dimensional (3D) information on mouse neonate brains and skulls using micro-computed tomography (micro-CT). The protocol includes those steps needed to dissect the samples, stain and scan the brain, and obtain morphometric measurements of the whole organ and regions of interest (ROIs). Image analysis includes the segmentation of structures and the digitization of point coordinates. In sum, this work shows that the combination of micro-CT and Lugol's solution as a contrast agent is a suitable alternative for imaging the perinatal brains of small animals. This imaging workflow has applications in developmental biology, biomedicine, and other sciences interested in assessing the effect of diverse genetic and environmental factors on brain development.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted , Animals , Mice , X-Ray Microtomography/methods , Magnetic Resonance Imaging , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods
10.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37214859

ABSTRACT

Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration, and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging poses great promise, and generates elegant images. However, generating even moderate through-put quantified images is challenging for many reasons. As a result, the association between morphogenesis and cellular processes in 3D developing tissues has not been fully explored. To address this critical gap, we have developed an imaging and image analysis pipeline to enable 3D quantification of cellular dynamics along with 3D morphology for the same individual embryo. Specifically, we focus on how 3D distribution of proliferation relates to morphogenesis during mouse facial development. Our method involves imaging with light-sheet microscopy, automated segmentation of cells and tissues using machine learning-based tools, and quantification of external morphology via geometric morphometrics. Applying this framework, we show that changes in proliferation are tightly correlated to changes in morphology over the course of facial morphogenesis. These analyses illustrate the potential of this pipeline to investigate mechanistic relationships between cellular dynamics and morphogenesis during embryonic development.

11.
Nat Genet ; 55(5): 841-851, 2023 05.
Article in English | MEDLINE | ID: mdl-37024583

ABSTRACT

Transcriptional regulation exhibits extensive robustness, but human genetics indicates sensitivity to transcription factor (TF) dosage. Reconciling such observations requires quantitative studies of TF dosage effects at trait-relevant ranges, largely lacking so far. TFs play central roles in both normal-range and disease-associated variation in craniofacial morphology; we therefore developed an approach to precisely modulate TF levels in human facial progenitor cells and applied it to SOX9, a TF associated with craniofacial variation and disease (Pierre Robin sequence (PRS)). Most SOX9-dependent regulatory elements (REs) are buffered against small decreases in SOX9 dosage, but REs directly and primarily regulated by SOX9 show heightened sensitivity to SOX9 dosage; these RE responses partially predict gene expression responses. Sensitive REs and genes preferentially affect functional chondrogenesis and PRS-like craniofacial shape variation. We propose that such REs and genes underlie the sensitivity of specific phenotypes to TF dosage, while buffering of other genes leads to robust, nonlinear dosage-to-phenotype relationships.


Subject(s)
Pierre Robin Syndrome , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/genetics , Pierre Robin Syndrome/genetics , Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Phenotype
12.
Nat Commun ; 14(1): 1174, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859534

ABSTRACT

Placental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality. To dissect phenotype causality, we generated embryo- and trophoblast-specific conditional knockouts for each of these lines. This was facilitated by the establishment of a new transgenic mouse, Sox2-Flp, that enables the efficient generation of trophoblast-specific conditional knockouts. We demonstrate a strictly trophoblast-driven cause of the CHD and embryonic lethality in one of the three lines (Atp11a) and a significant contribution of the placenta to the embryonic phenotypes in another line (Smg9). Importantly, our data reveal defects in the maternal blood-facing syncytiotrophoblast layer as a shared pathology in placentally induced CHD models. This study highlights the placenta as a significant source of developmental heart disorders, insights that will transform our understanding of the vast number of unexplained congenital heart defects.


Subject(s)
Heart Diseases , Trophoblasts , Female , Pregnancy , Animals , Mice , Placenta , Heart , Epithelial Cells , Mice, Transgenic
13.
Eur J Hum Genet ; 31(9): 1010-1016, 2023 09.
Article in English | MEDLINE | ID: mdl-36750664

ABSTRACT

Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and 3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis.


Subject(s)
Face , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Syndrome , Imaging, Three-Dimensional/methods
14.
Am J Med Genet C Semin Med Genet ; 193(3): e32035, 2023 09.
Article in English | MEDLINE | ID: mdl-36751120

ABSTRACT

Facial recognition technology (FRT) has been adopted as a precision medicine tool. The medical genetics field highlights both the clinical potential and privacy risks of this technology, putting the discipline at the forefront of a new digital privacy debate. Investigating how geneticists perceive the privacy concerns surrounding FRT can help shape the evolution and regulation of the field, and provide lessons for medicine and research more broadly. Five hundred and sixty-two genetics clinicians and researchers were approached to fill out a survey, 105 responded, and 80% of these completed. The survey consisted of 48 questions covering demographics, relationship to new technologies, views on privacy, views on FRT, and views on regulation. Genetics professionals generally placed a high value on privacy, although specific views differed, were context-specific, and covaried with demographic factors. Most respondents (88%) agreed that privacy is a basic human right, but only 37% placed greater weight on it than other values such as freedom of speech. Most respondents (80%) supported FRT use in genetics, but not necessarily for broader clinical use. A sizeable percentage (39%) were unaware of FRT's lower accuracy rates in marginalized communities and of the mental health effects of privacy violations (62%), but most (76% and 75%, respectively) expressed concern when informed. Overall, women and those who self-identified as politically progressive were more concerned about the lower accuracy rates in marginalized groups (88% vs. 64% and 83% vs. 63%, respectively). Younger geneticists were more wary than older geneticists about using FRT in genetics (28% compared to 56% "strongly" supported such use). There was an overall preference for more regulation, but respondents had low confidence in governments' or technology companies' ability to accomplish this. Privacy views are nuanced and context-dependent. Support for privacy was high but not absolute, and clear deficits existed in awareness of crucial FRT-related discrimination potential and mental health impacts. Education and professional guidelines may help to evolve views and practices within the field.


Subject(s)
Facial Recognition , Privacy , Humans , Female , Surveys and Questionnaires , Mental Health , Precision Medicine
15.
Artif Intell Med ; 134: 102425, 2022 12.
Article in English | MEDLINE | ID: mdl-36462895

ABSTRACT

Many genetic syndromes are associated with distinctive facial features. Several computer-assisted methods have been proposed that make use of facial features for syndrome diagnosis. Training supervised classifiers, the most common approach for this purpose, requires large, comprehensive, and difficult to collect databases of syndromic facial images. In this work, we use unsupervised, normalizing flow-based manifold and density estimation models trained entirely on unaffected subjects to detect syndromic 3D faces as statistical outliers. Furthermore, we demonstrate a general, user-friendly, gradient-based interpretability mechanism that enables clinicians and patients to understand model inferences. 3D facial surface scans of 2471 unaffected subjects and 1629 syndromic subjects representing 262 different genetic syndromes were used to train and evaluate the models. The flow-based models outperformed unsupervised comparison methods, with the best model achieving an ROC-AUC of 86.3% on a challenging, age and sex diverse data set. In addition to highlighting the viability of outlier-based syndrome screening tools, our methods generalize and extend previously proposed outlier scores for 3D face-based syndrome detection, resulting in improved performance for unsupervised syndrome detection.


Subject(s)
Syndrome , Humans , Databases, Factual
16.
J Med Genet ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858754

ABSTRACT

BACKGROUND: In clinical genetics, establishing an accurate nosology requires analysis of variations in both aetiology and the resulting phenotypes. At the phenotypic level, recognising typical facial gestalts has long supported clinical and molecular diagnosis; however, the objective analysis of facial phenotypic variation remains underdeveloped. In this work, we propose exploratory strategies for assessing facial phenotypic variation within and among clinical and molecular disease entities and deploy these techniques on cross-sectional samples of four RASopathies: Costello syndrome (CS), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC) and neurofibromatosis type 1 (NF1). METHODS: From three-dimensional dense surface scans, we model the typical phenotypes of the four RASopathies as average 'facial signatures' and assess individual variation in terms of direction (what parts of the face are affected and in what ways) and severity of the facial effects. We also derive a metric of phenotypic agreement between the syndromes and a metric of differences in severity along similar phenotypes. RESULTS: CFC shows a relatively consistent facial phenotype in terms of both direction and severity that is similar to CS and NS, consistent with the known difficulty in discriminating CFC from NS based on the face. CS shows a consistent directional phenotype that varies in severity. Although NF1 is highly variable, on average, it shows a similar phenotype to CS. CONCLUSIONS: We established an approach that can be used in the future to quantify variations in facial phenotypes between and within clinical and molecular diagnoses to objectively define and support clinical nosologies.

17.
Genome Res ; 32(7): 1242-1253, 2022 07.
Article in English | MEDLINE | ID: mdl-35710300

ABSTRACT

Structural variants (SVs) can affect protein-coding sequences as well as gene regulatory elements. However, SVs disrupting protein-coding sequences that also function as cis-regulatory elements remain largely uncharacterized. Here, we show that craniosynostosis patients with SVs containing the histone deacetylase 9 (HDAC9) protein-coding sequence are associated with disruption of TWIST1 regulatory elements that reside within the HDAC9 sequence. Based on SVs within the HDAC9-TWIST1 locus, we defined the 3'-HDAC9 sequence as a critical TWIST1 regulatory region, encompassing craniofacial TWIST1 enhancers and CTCF sites. Deletions of either Twist1 enhancers (eTw5-7Δ/Δ) or CTCF site (CTCF-5Δ/Δ) within the Hdac9 protein-coding sequence led to decreased Twist1 expression and altered anterior/posterior limb expression patterns of SHH pathway genes. This decreased Twist1 expression results in a smaller sized and asymmetric skull and polydactyly that resembles Twist1+/- mouse phenotype. Chromatin conformation analysis revealed that the Twist1 promoter interacts with Hdac9 sequences that encompass Twist1 enhancers and a CTCF site, and that interactions depended on the presence of both regulatory regions. Finally, a large inversion of the entire Hdac9 sequence (Hdac9 INV/+) in mice that does not disrupt Hdac9 expression but repositions Twist1 regulatory elements showed decreased Twist1 expression and led to a craniosynostosis-like phenotype and polydactyly. Thus, our study elucidates essential components of TWIST1 transcriptional machinery that reside within the HDAC9 sequence. It suggests that SVs encompassing protein-coding sequences could lead to a phenotype that is not attributed to its protein function but rather to a disruption of the transcriptional regulation of a nearby gene.


Subject(s)
Craniosynostoses , Histone Deacetylases , Nuclear Proteins , Polydactyly , Repressor Proteins , Twist-Related Protein 1 , Animals , Craniosynostoses/genetics , Gene Expression Regulation , Histone Deacetylases/genetics , Humans , Mice , Nuclear Proteins/genetics , Phenotype , Polydactyly/genetics , Repressor Proteins/genetics , Twist-Related Protein 1/genetics
18.
Dev Dyn ; 251(10): 1711-1727, 2022 10.
Article in English | MEDLINE | ID: mdl-35618654

ABSTRACT

BACKGROUND: Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS: Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS: We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.


Subject(s)
Branchial Region , Heart , Animals , Fibroblast Growth Factor 8/genetics , Humans , Jaw Abnormalities , Maxilla , Mice , Mouth Abnormalities
19.
Sci Data ; 9(1): 230, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614082

ABSTRACT

Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph ).


Subject(s)
Databases, Factual , Mice , Animals , Brain , Mice/anatomy & histology , X-Ray Microtomography
20.
IEEE J Biomed Health Inform ; 26(7): 3229-3239, 2022 07.
Article in English | MEDLINE | ID: mdl-35380975

ABSTRACT

One of the primary difficulties in treating patients with genetic syndromes is diagnosing their condition. Many syndromes are associated with characteristic facial features that can be imaged and utilized by computer-assisted diagnosis systems. In this work, we develop a novel 3D facial surface modeling approach with the objective of maximizing diagnostic model interpretability within a flexible deep learning framework. Therefore, an invertible normalizing flow architecture is introduced to enable both inferential and generative tasks in a unified and efficient manner. The proposed model can be used (1) to infer syndrome diagnosis and other demographic variables given a 3D facial surface scan and (2) to explain model inferences to non-technical users via multiple interpretability mechanisms. The model was trained and evaluated on more than 4700 facial surface scans from subjects with 47 different syndromes. For the challenging task of predicting syndrome diagnosis given a new 3D facial surface scan, age, and sex of a subject, the model achieves a competitive overall top-1 accuracy of 71%, and a mean sensitivity of 43% across all syndrome classes. We believe that invertible models such as the one presented in this work can achieve competitive inferential performance while greatly increasing model interpretability in the domain of medical diagnosis.


Subject(s)
Diagnosis, Computer-Assisted , Face , Diagnosis, Computer-Assisted/methods , Face/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...