Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 32(11): e13163, 2022 11.
Article in English | MEDLINE | ID: mdl-36437679

ABSTRACT

During wildfire smoke events public health agencies release advisories to stay indoors, close doors and windows, and operate a portable air cleaner (PAC). The do-it-yourself (DIY) air cleaner consisting of a box fan and a furnace filter is a widely used low-cost alternative to commercial PACs because of its increased accessibility. In this study, we evaluate the clean air delivery rate (CADR) of different DIY air cleaner designs for reducing simulated wildfire smoke and identify operating parameters that may impact their performance and use. The simplest formulation of a DIY air cleaner (box fan with taped on minimum effectiveness reporting value - [MERV] 13 furnace filter) had a CADR of 111.2 ± 1.3 ft3 /min (CFM). Increasing the fan flow by changing the fan type, increasing the fan setting, or reducing the pressure drop across the filtering surface increased the CADR. Large increases in CADR could be obtained by using a shroud (40%), using a 4″ thick filter (123%) using two filters in a wedge shape (137%), or using four filters in a Corsi-Rosenthal (CR) box design (261%). The CADR was greatly reduced with filters heavily loaded with smoke, pointing to the need for frequent filter changes during smoke events.


Subject(s)
Air Pollution, Indoor , Wildfires , Smoke/analysis , Air Pollution, Indoor/analysis , Environment, Controlled , Housing
2.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35579536

ABSTRACT

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Gases , Remote Sensing Technology
3.
Article in English | MEDLINE | ID: mdl-33409323

ABSTRACT

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

4.
J Atmos Chem ; 72(3-4): 373-391, 2015.
Article in English | MEDLINE | ID: mdl-26692596

ABSTRACT

The current network of ground-based monitors for ozone (O3) is limited due to the spatial heterogeneity of O3 at the surface. Satellite measurements can provide a solution to this limitation, but the lack of sensitivity of satellites to O3 within the boundary layer causes large uncertainties in satellite retrievals at the near-surface. The vertical variability of O3 was investigated using ozonesondes collected as part of NASA's Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign during July 2011 in the Baltimore, MD/Washington D.C. metropolitan area. A subset of the ozonesonde measurements was corrected for a known bias from the electrochemical solution strength using new procedures based on laboratory and field tests. A significant correlation of O3 over the two sites with ozonesonde measurements (Edgewood and Beltsville, MD) was observed between the mid-troposphere (7-10 km) and the near-surface (1-3 km). A linear regression model based on the partial column amounts of O3 within these subregions was developed to calculate the near-surface O3 using mid-tropospheric satellite measurements from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The uncertainties of the calculated near-surface O3 using TES mid-tropospheric satellite retrievals and a linear regression model were less than 20 %, which is less than that of the observed variability of O3 at the surface in this region. These results utilize a region of the troposphere to which existing satellites are more sensitive compared to the boundary layer and can provide information of O3 at the near-surface using existing satellite infrastructure and algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...