Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 121: 9-19, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27422103

ABSTRACT

The use of pesticides in Mozambique is increasing along with the development of agriculture in the country. Mangroves along the coastlines are ecologically important areas and vital nursing grounds for many aquatic species, several of which are of high economic value in Mozambique. Barred mudskipper (Periophthalmus argentilineatus), Jarbua fish (Terapon jarbua), Indian white prawn (Penaeus indicus) and the clam Meretrix meretrix were collected at three mangrove sites in the Maputo Bay area. This was complemented with samplings of the freshwater fish Mozambique tilapia (Oreochromis mossambicus), which was collected from three sampling sites along rivers in the surroundings of Maputo and from three sites along the Olifants and Limpopo River. Acetylcholinesterase (AChE) activity, which is an established biomarker for organophosphates and carbamate pesticides, was measured in brain and liver tissue in fish, and hepatopancreas tissue in prawn and clam. Butyrylcholinesterase (BChE) activity was also analyzed. Freshwater samples for pesticide analyses were collected in order to get an initial understanding of the classes and levels of pesticides present in aquatic systems in Mozambique. In addition to field samplings two 48-h exposure experiments were also conducted where the Indian white prawn and Barred mudskipper were exposed to malathion, and Mozambique tilapia exposed to malathion and diazinon. Field results show a significant decrease in AChE activity in fish from four of the sampling sites suggesting that pesticides present in water could be one stressor potentially affecting aquatic organisms negatively. The 48 h exposure experiment results showed a clear dose-response relationship of AChE activity in mudskipper and tilapia suggesting these species as suitable as sentinel species in environmental studies.


Subject(s)
Aquatic Organisms/physiology , Environmental Monitoring , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Wetlands , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Mozambique , Pesticides/analysis , Water Pollutants, Chemical/analysis
2.
Arch Environ Contam Toxicol ; 62(4): 579-88, 2012 May.
Article in English | MEDLINE | ID: mdl-22193862

ABSTRACT

Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.


Subject(s)
Daphnia/drug effects , Electronic Waste/analysis , Water Pollutants, Chemical/toxicity , Animals , Cell Phone , Computers , Metals/toxicity , Plastics/toxicity , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...