Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 58: 52-61, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27692531

ABSTRACT

The objective of this study was to evaluate the effectiveness of a modified Odor Profile Method (OPM) at a trash transfer station (TTS). An updated Landfill Odor Wheel was used to define odor character and distinguish among odor sources. The Flavor Profile Analysis (FPA) intensity scale was used to rank the relative intensity of the various odor characters defined by the odor wheel and to understand how each odor profile changed off site. Finally, the odor wheel was used to select the appropriate chemical analysis to identify the odorants causing the odors identified by the human panelists. The OPM was demonstrated as an effective tool for characterizing and distinguishing odor sources at a TTS. Municipal solid waste (MSW) odors were characterized as rancid, sulfur, and fragrant; rancid odors were dominant in the odor profile on-site, while sulfur odors dominated off-site. Targeted chemical analysis was used to identify odorants potentially responsible for odors at the site. Methyl mercaptan (rotten vegetable) and hydrogen sulfide (rotten egg) were identified as the odorants most likely to be responsible for the sulfur odors at the site. Acetaldehyde (sweet, fruity), acetic acid (vinegar), and butyric acid (rancid) were identified as the odorants mostly likely to be causing the rancid and sour odors. Terpenes/pine odors were observed near the greenwaste pile. Results confirm that the OPM, together with properly selected chemical analyses, can be a useful tool for identifying and quantifying the sources of odors.


Subject(s)
Environmental Monitoring/methods , Odorants/analysis , Waste Disposal Facilities , Acetaldehyde/analysis , Acetic Acid/analysis , Butyric Acid/analysis , Gas Chromatography-Mass Spectrometry , Hydrogen Sulfide/analysis , Solid Waste , Sulfhydryl Compounds/analysis
2.
J Environ Manage ; 180: 257-63, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27235805

ABSTRACT

Odorous emissions from wastewater treatment plants (WWTPs) are an annoyance for neighboring communities. This article, for the first time, quantitatively reports on an evaluation of the presence of fecal odorants identified in air samples from two exemplary WWTPs by the odor profile method (OPM) and chemical analysis. The fecal odorants indole and skatole were identified by Gas Chromatography-Mass Spectrometry. The odor threshold concentration of skatole was determined to be 0.327 ng/L (60 pptV) in Teflon Bags by an expert panel. Skatole was found to be the primary chemical leading to fecal odor, due to its odor concentration to odor threshold concentration ratio that ranged from 2.8 to 22.5. The Weber-Fechner law was followed by pure skatole, but was not applicable when there was a mixture of fecal odorants and other odorant types present in WWTP air emission samples. This is probably caused by antagonism with other odorant types. Several existing odor control treatment methods for fecal odorants were evaluated at different wastewater treatment operations at two WWTPs by the OPM and chemical analysis for indole and skatole. Chemical scrubbing and biofiltration performed best in removing fecal odors among current control technologies.


Subject(s)
Air Pollutants/analysis , Odorants/analysis , Smell , Wastewater , Adolescent , Adult , Aged , California , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Waste Disposal Facilities , Water Purification/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...