Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(23): 3936-3951.e10, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36174572

ABSTRACT

Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNß) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNß treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Myeloid Cells , Stem Cells , Interferons
2.
Adv Healthc Mater ; 8(10): e1900068, 2019 05.
Article in English | MEDLINE | ID: mdl-30945474

ABSTRACT

Synthetic hydrogels are an important class of materials in tissue engineering, drug delivery, and other biomedical fields. Their mechanical and electrical properties can be tuned to match those of biological tissues. In this work, hydrogels that exhibit both mechanical and electrical biomimicry are reported. The presented dual networks consist of supramolecular networks formed from 2:1 homoternary complexes of imidazolium-based guest molecules in cucubit[8]uril and covalent networks of oligoethylene glycol-(di)methacrylate. The viscoelastic properties of human brain tissues are also investigated. The mechanical properties of the dual network gels are benchmarked against the human tissue, and it is found that they both are neuro-mimetic and exhibit cytocompatibility in a neural stem cell model.


Subject(s)
Biomimetic Materials/chemistry , Brain/physiology , Hydrogels/chemistry , Bridged-Ring Compounds/chemistry , Elasticity , Electric Conductivity , Humans , Imidazoles/chemistry , Polyethylene Glycols/chemistry , Rheology , Shear Strength , Tissue Engineering
3.
ACS Macro Lett ; 8(12): 1629-1634, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-35619388

ABSTRACT

The scalable production of uniformly distributed graphene (GR)-based composite materials remains a sizable challenge. While GR-polymer nanocomposites can be manufactured at a large scale, processing limitations result in poor control over the homogeneity of hydrophobic GR sheets in the matrices. Such processes often result in difficulties controlling stability and avoiding aggregation, therefore eliminating benefits that might have otherwise arisen from the nanoscopic dimensions of GR. Here, we report an exfoliated and stabilized GR dispersion in water. Cucurbit[8]uril (CB[8])-mediated host-guest chemistry was used to obtain supramolecular hydrogels consisting of uniformly distributed GR and guest-functionalized macromolecules. The obtained GR hydrogels show superior bioelectrical properties over identical systems produced without CB[8]. Utilizing such supramolecular interactions with biologically derived macromolecules is a promising approach to stabilize graphene in water and avoid oxidative chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...