Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 4(2): 102231, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37104091

ABSTRACT

This protocol describes endogenous labeling of opioid receptors (ORs) using a ligand-directed reagent, naltrexamine-acylimidazole compounds (NAI-X). NAI acts by guiding and permanently tagging a small-molecule reporter (X)-such as fluorophores or biotin-to ORs. Here we detail syntheses and uses of NAI-X for OR visualization and functional studies. The NAI-X compounds overcome long-standing challenges in mapping and tracking endogenous ORs as the labeling can be done in situ with live tissues or cultured cells. For complete details on the use and execution of this protocol, please refer to Arttamangkul et al.1,2.

2.
Exp Eye Res ; 225: 109281, 2022 12.
Article in English | MEDLINE | ID: mdl-36265575

ABSTRACT

Photorefractive keratectomy (PRK) is an alternative to LASIK and can cause intense acute pain that is often not relieved by standard treatments. To assess potential therapeutics for this type of acute pain, appropriate preclinical models are needed. We describe a preclinical corneal abrasion rat model that simulates the initial stages of PRK surgery and demonstrates similar pain and tear dysfunction as seen clinically. We used both behavioral and homeostatic assays to determine the therapeutic potential of resveratrol on pain and tear production. Studies were conducted in male and female Sprague-Dawley rats. Heptanol was applied to one eye and the superficial corneal epithelium was removed, mimicking the abrasion used in PRK. Spontaneous pain was assessed with orbital tightening (OT) scores for 7 days. Topical resveratrol increased OT scores sex-specifically in abraded males, but not females, at 72 h and 1 week after abrasion. Resveratrol increased tear production in abraded males, with no effect in abraded females. There was no correlation between OT score at 1 week and tear production measurements, demonstrating no relationship between spontaneous ocular pain and tear dysfunction in this model. These findings demonstrate the usefulness of our corneal abrasion preclinical PRK model for the assessment of ocular pain therapeutics and indicate that topical resveratrol may not be useful for managing PRK-induced pain.


Subject(s)
Acute Pain , Corneal Injuries , Epithelium, Corneal , Myopia , Photorefractive Keratectomy , Male , Rats , Animals , Photorefractive Keratectomy/adverse effects , Resveratrol , Lasers, Excimer , Acute Pain/surgery , Rats, Sprague-Dawley , Corneal Injuries/drug therapy , Corneal Injuries/surgery , Cornea
3.
J Am Chem Soc ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33186023

ABSTRACT

Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.

5.
Antimicrob Agents Chemother ; 59(1): 654-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25313210

ABSTRACT

wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 µM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates.


Subject(s)
Antimalarials/pharmacology , Benzimidazoles/pharmacology , Plasmodium falciparum/drug effects , Porphobilinogen Synthase/antagonists & inhibitors , Benzimidazoles/chemistry , Humans , Inhibitory Concentration 50 , Plasmodium berghei/drug effects , Plasmodium falciparum/physiology , Thiophenes/chemistry , Thiophenes/pharmacology , Toxoplasma/drug effects
6.
J Med Chem ; 57(6): 2498-510, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24568185

ABSTRACT

The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg(2+), or K(+) stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Porphobilinogen Synthase/antagonists & inhibitors , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Chlamydia/drug effects , Herbicides/chemical synthesis , Herbicides/pharmacology , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Weight , Pisum sativum , Plants , Porphyrias/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Rickettsia/drug effects , Stereoisomerism , Structure-Activity Relationship , Wolbachia/drug effects
7.
Chem Biol ; 20(2): 177-87, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23438747

ABSTRACT

Lymphatic filariasis and onchocerciasis are severe diseases caused by filarial worms and affect more than 150 million people worldwide. Endosymbiotic α-proteobacteria Wolbachia are essential for these parasites throughout their life cycle. Using a high-throughput chemical screen, we identified a benzimidazole compound, wALADin1, that selectively targets the δ-aminolevulinic acid dehydratase (ALAD) of Wolbachia (wALAD) and exhibits macrofilaricidal effects on Wolbachia-containing filarial worms in vitro. wALADin1 is a mixed competitive/noncompetitive inhibitor that interferes with the Mg(2+)-induced activation of wALAD. This mechanism inherently excludes activity against the Zn(2+)-dependent human ortholog and might be translatable to Mg(2+)-responsive orthologs of other bacterial or protozoan pathogens. The specificity profile of wALADin1 derivatives reveals chemical features responsible for inhibitory potency and species selectivity. Our findings validate wALADins as a basis for developing potent leads that meet current requirements for antifilarial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Benzimidazoles/pharmacology , Filarioidea/drug effects , Heme/biosynthesis , Thiophenes/pharmacology , Wolbachia/metabolism , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Benzimidazoles/chemistry , Benzimidazoles/therapeutic use , Drug Design , Elephantiasis, Filarial/drug therapy , High-Throughput Screening Assays , Humans , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Porphobilinogen Synthase/antagonists & inhibitors , Porphobilinogen Synthase/metabolism , Symbiosis , Thiophenes/chemistry , Thiophenes/therapeutic use , Wolbachia/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...