Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Article in English | MEDLINE | ID: mdl-37089221

ABSTRACT

This learning activity teaches the difficult concept of V(D)J recombination as it occurs in B cells. Following the traditional lecture, this hands-on activity uses pipe cleaners of various colors representing variable, joining, and diversity gene segments and recombination signal sequences. Students are provided with instructions for using the pipe cleaners to assemble specific light and heavy immunoglobulin chains. Students each assemble their own light and heavy chains and compare the products made by classmates. This activity uses materials that are easy and affordable to acquire and provides a tactile approach to reinforcing concepts that students often struggle to visualize and master from lecture and textbook material alone.

2.
Gut Microbes ; 7(2): 136-45, 2016.
Article in English | MEDLINE | ID: mdl-27078059

ABSTRACT

Salmonella enterica Typhimurium employs type III secreted effectors to induce cellular invasion and pathogenesis. We previously reported the secreted effector SipA is in part responsible for inducing the apical accumulation of the host membrane protein PERP, a host factor we have shown is key to the inflammatory response induced by Salmonella. We now report that the S. Typhimurium type III secreted effector SipC significantly contributes to PERP redistribution to the apical membrane surface. To our knowledge, this is the first report demonstrating a role for SipC in directing the trafficking of a host membrane protein to the cell surface. In sum, facilitation of PERP trafficking appears to be a result of type III secreted effector-mediated recruitment of vesicles to the apical surface. Our study therefore reveals a new role for SipC, and builds upon previous reports suggesting recruitment of vesicles to the cell surface is important for Salmonella invasion.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Genes, Tumor Suppressor , Host-Pathogen Interactions , Humans , Membrane Proteins/genetics , Protein Transport , Salmonella Infections/genetics , Salmonella typhimurium/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
3.
Cell Microbiol ; 17(6): 843-59, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25486861

ABSTRACT

Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast-two-hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP-22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , Inflammation/microbiology , Inflammation/pathology , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Salmonella typhimurium/immunology , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Genes, Tumor Suppressor , Humans , Protein Binding , Protein Interaction Mapping , Transendothelial and Transepithelial Migration , Two-Hybrid System Techniques
4.
Mol Biol Evol ; 24(8): 1731-43, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17513882

ABSTRACT

We investigated the origin and diversification of the high-affinity nitrate transporter NRT2 in fungi and other eukaryotes using Bayesian and maximum parsimony methods. To assess the higher-level relationships and origins of NRT2 in eukaryotes, we analyzed 200 amino acid sequences from the Nitrate/Nitrite Porter (NNP) Family (to which NRT2 belongs), including 55 fungal, 41 viridiplantae (green plants), 11 heterokonts (stramenopiles), and 87 bacterial sequences. To assess evolution of NRT2 within fungi and other eukaryotes, we analyzed 116 amino acid sequences of NRT2 from 58 fungi, 40 viridiplantae (green plants), 1 rhodophyte, and 5 heterokonts, rooted with 12 bacterial sequences. Our results support a single origin of eukaryotic NRT2 from 1 of several clades of mostly proteobacterial NNP transporters. The phylogeny of bacterial NNP transporters does not directly correspond with bacterial taxonomy, apparently due to ancient duplications and/or horizontal gene transfer events. The distribution of NRT2 in the eukaryotes is patchy, but the NRT2 phylogeny nonetheless supports the monophyly of major groups such as viridiplantae, flowering plants, monocots, and eudicots, as well as fungi, ascomycetes, basidiomycetes, and agaric mushrooms. At least 1 secondary origin of eukaryotic NRT2 via horizontal transfer to the fungi is suggested, possibly from a heterokont donor. Our analyses also suggest that there has been a horizontal transfer of nrt2 from a basidiomycete fungus to an ascomycete fungus and reveal a duplication of nrt2 in the ectomycorrhizal mushroom genus, Hebeloma.


Subject(s)
Anion Transport Proteins/genetics , Eukaryotic Cells/physiology , Fungi/genetics , Anion Transport Proteins/metabolism , Eukaryota/classification , Eukaryota/genetics , Evolution, Molecular , Fungi/metabolism , Gene Expression Regulation, Plant , Nitrate Transporters , Nitrates/metabolism , Phylogeny , Sequence Alignment
5.
J Org Chem ; 71(3): 1080-4, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16438524

ABSTRACT

Heteroaromatic thiols may be oxidized to the sulfonyl chloride at low temperature (-25 degrees C) by using 3.3 equiv of aqueous sodium hypochlorite. The reaction is rapid, avoids the use of chlorine gas, and succeeds with substrates that have previously been found to afford little or none of the sulfonamide product with other procedures. The method allows the preparation of the sulfonyl fluorides, which are stable enough to be purified and stored, making them potentially useful monomers in parallel chemistry efforts.


Subject(s)
Sulfhydryl Compounds/chemistry , Sulfinic Acids/chemistry , Sulfonamides/chemistry , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...