Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 50(12): 2358-70, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19318684

ABSTRACT

Liver X receptors (LXRs) are ligand-activated transcription factors that coordinate regulation of gene expression involved in several cellular functions but most notably cholesterol homeostasis encompassing cholesterol transport, catabolism, and absorption. WAY-252623 (LXR-623) is a highly selective and orally bioavailable synthetic modulator of LXR, which demonstrated efficacy for reducing lesion progression in the murine LDLR(-/-) atherosclerosis model with no associated increase in hepatic lipogenesis either in this model or Syrian hamsters. In nonhuman primates with normal lipid levels, WAY-252623 significantly reduced total (50-55%) and LDL-cholesterol (LDLc) (70-77%) in a time- and dose-dependent manner as well as increased expression of the target genes ABCA1/G1 in peripheral blood cells. Statistically significant decreases in LDLc were noted as early as day 7, reached a maximum by day 28, and exceeded reductions observed for simvastatin alone (20 mg/kg). Transient increases in circulating triglycerides and liver enzymes reverted to baseline levels over the course of the study. Complementary microarray analysis of duodenum and liver gene expression revealed differential activation of LXR target genes and suggested no direct activation of hepatic lipogenesis. WAY-252623 displays a unique and favorable pharmacological profile suggesting synthetic LXR ligands with these characteristics may be suitable for evaluation in patients with atherosclerotic dyslipidemia.


Subject(s)
Atherosclerosis/drug therapy , Cholesterol, LDL/drug effects , Cholesterol, LDL/metabolism , Indazoles/pharmacology , Lipid Metabolism/drug effects , Macaca fascicularis/metabolism , Orphan Nuclear Receptors/agonists , Animals , Atherosclerosis/metabolism , Caco-2 Cells , Cricetinae , Disease Models, Animal , Humans , Indazoles/blood , Indazoles/chemistry , Ligands , Liver/enzymology , Liver/metabolism , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors/metabolism
2.
J Transl Med ; 6: 59, 2008 Oct 16.
Article in English | MEDLINE | ID: mdl-18925943

ABSTRACT

BACKGROUND: LXRs (Liver X Receptor alpha and beta) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds. OBJECTIVE: Blood markers of LXR agonist exposure/activity were sought to support clinical development of novel synthetic LXR modulators. METHODS: Transcript levels of LXR target genes ABCA1 and ABCG1 were measured using quantitative reverse transcriptase/polymerase chain reaction assays (qRT-PCR) in peripheral blood from mice and rats (following a single oral dose) and monkeys (following 7 daily oral doses) of synthetic LXR agonists. LXRalpha, LXRbeta, ABCA1, and ABCG1 mRNA were measured by qRT-PCR in human peripheral blood mononuclear cells (PBMC), monocytes, T- and B-cells treated ex vivo with WAY-252623 (LXR-623), and protein levels in human PBMC were measured by Western blotting. ABCA1/G1 transcript levels in whole-blood RNA were measured using analytically validated assays in human subjects participating in a Phase 1 SAD (Single Ascending Dose) clinical study of LXR-623. RESULTS: A single oral dose of LXR agonists induced ABCA1 and ABCG1 transcription in rodent peripheral blood in a dose- and time-dependent manner. Induction of gene expression in rat peripheral blood correlated with spleen expression, suggesting LXR gene regulation in blood has the potential to function as a marker of tissue gene regulation. Transcriptional response to LXR agonist was confirmed in primates, where peripheral blood ABCA1 and ABCG1 levels increased in a dose-dependent manner following oral treatment with LXR-623. Human PBMC, monocytes, T- and B cells all expressed both LXRalpha and LXRbeta, and all cell types significantly increased ABCA1 and ABCG1 expression upon ex vivo LXR-623 treatment. Peripheral blood from a representative human subject receiving a single oral dose of LXR-623 showed significant time-dependent increases in ABCA1 and ABCG1 transcription. CONCLUSION: Peripheral blood cells express LXRalpha and LXRbeta, and respond to LXR agonist treatment by time- and dose-dependently inducing LXR target genes. Transcript levels of LXR target genes in peripheral blood are relevant and useful biological indicators for clinical development of synthetic LXR modulators.


Subject(s)
Blood Cells/metabolism , DNA-Binding Proteins/agonists , Receptors, Cytoplasmic and Nuclear/agonists , Transcription, Genetic , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Administration, Oral , Animals , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/pharmacology , Biomarkers , Blood Cells/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Liver X Receptors , Orphan Nuclear Receptors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
3.
4.
Bioorg Med Chem ; 15(10): 3321-33, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17391964

ABSTRACT

A series of phenyl acetic acid based quinolines was prepared as LXR modulators. An SAR study in which the C-3 and C-8 positions of the quinoline core were varied led to the identification of two potent LXR agonists 23 and 27. Both compounds displayed good binding affinity for LXRbeta and LXRalpha, and increased expression of ABCA1 in THP-1 cells. These two compounds also had desirable pharmacokinetic profiles in mice and displayed in vivo efficacy in a 12-week Apo E knockout mouse lesion model.


Subject(s)
Atherosclerosis/prevention & control , DNA-Binding Proteins/agonists , Phenylacetates/chemical synthesis , Phenylacetates/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , CHO Cells , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , DNA-Binding Proteins/genetics , Humans , Indicators and Reagents , Liver X Receptors , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/genetics , Recombinant Proteins/metabolism , Solvents , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Transcriptional Activation/genetics
5.
J Med Chem ; 49(21): 6151-4, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034119

ABSTRACT

A structure-based approach was used to optimize our new class of quinoline LXR modulators leading to phenyl acetic acid substituted quinolines 15 and 16. Both compounds displayed good binding affinity for LXRbeta and LXRalpha and were potent activators in LBD transactivation assays. The compounds also increased expression of ABCA1 and stimulated cholesterol efflux in THP-1 cells. Quinoline 16 showed good oral bioavailability and in vivo efficacy in a LDLr knockout mouse model for lesions.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Atherosclerosis/drug therapy , DNA-Binding Proteins/agonists , Phenylacetates/chemical synthesis , Quinolines/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , Animals , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Drug Stability , Female , Humans , In Vitro Techniques , Ligands , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors , Phenylacetates/chemistry , Phenylacetates/pharmacology , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Structure-Activity Relationship , Transcriptional Activation
6.
Mol Pharmacol ; 70(4): 1340-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16825483

ABSTRACT

The nuclear receptors liver X receptor (LXR) LXRalpha and LXRbeta are differentially expressed ligand-activated transcription factors that induce genes controlling cholesterol homeostasis and lipogenesis. Synthetic ligands for both receptor subtypes activate ATP binding cassette transporter A1 (ABCA1)-mediated cholesterol metabolism, increase reverse cholesterol transport, and provide atheroprotection in mice. However, these ligands may also increase hepatic triglyceride (TG) synthesis via a sterol response element binding protein 1c (SREBP-1c)-dependent mechanism through a process reportedly regulated by LXRalpha. We studied pan-LXRalpha/beta agonists in LXRalpha knockout mice to assess the contribution of LXRbeta to the regulation of selected target genes. In vitro dose-response studies with macrophages from LXRalpha-/- and beta-/- mice confirm an equivalent role for LXRalpha and LXRbeta in the regulation of ABCA1 and SREBP-1c gene expression. Cholesterol-efflux studies verify that LXRbeta can drive apoA1-dependent cholesterol mobilization from macrophages. The in vivo role of LXRbeta in liver was further evaluated by treating LXRalpha-/- mice with a pan-LXRalpha/beta agonist. High-density lipoprotein (HDL) cholesterol increased without significant changes in plasma TG or very low density lipoprotein. Analysis of hepatic gene expression consistently revealed less activation of ABCA1 and SREBP-1c genes in the liver of LXRalpha null animals than in treated wild-type controls. In addition, hepatic CYP7A1 and several genes involved in fatty acid/TG biosynthesis were not induced. In peripheral tissues from these LXRalpha-null mice, LXRbeta activation increases ABCA1 and SREBP-1c gene expression in a parallel manner. However, putative elevation of SREBP-1c activity in these tissues did not cause hypertriglyceridemia. In summary, selective LXRbeta activation is expected to stimulate ABCA1 gene expression in macrophages, contribute to favorable HDL increases, but circumvent hepatic LXRalpha-dominated lipogenesis.


Subject(s)
DNA-Binding Proteins/physiology , Gene Expression Regulation , Liver/metabolism , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Lipid Metabolism , Lipoproteins, HDL/blood , Liver X Receptors , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors , Protein Isoforms , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism
7.
J Lipid Res ; 45(10): 1929-42, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15292374

ABSTRACT

Liver X receptors (LXRs) play key roles in the regulation of cholesterol homeostasis by limiting cholesterol accumulation in macrophages within arterial wall lesion sites by a mechanism that includes the upregulation of ATP binding cassette transporters. These atheroprotective properties distinguish LXRs as potential targets for pharmaceutical intervention in cardiovascular disease. Their associated activity for promoting lipogenesis and triglyceride accretion through the activation of sterol-response element binding protein 1c (SREBP-1c) expression, however, represents a potential proatherogenic liability. A newly characterized synthetic oxysterol, N,N-dimethyl-3beta-hydroxycholenamide (DMHCA), represents a gene-selective LXR modulator that mediates potent transcriptional activation of ABCA1 gene expression while exhibiting minimal effects on SREBP-1c both in vitro and in vivo in mice. DMHCA has the potential to stimulate cholesterol transport through the upregulation of LXR target genes, including ABCA1, in liver, small intestine, and peritoneal macrophages. Compared with known nonsteroidal LXR agonists, however, DMHCA exhibits only limited activity for increasing hepatic SREBP-1c mRNA and does not alter circulating plasma triglycerides. Cell-based studies also indicate that DMHCA enhances cholesterol efflux in macrophages and suggest a mechanism whereby this selective modulator can potentially inhibit cholesterol accumulation. DMHCA and related gene-selective ligands of LXR may have application to the study and treatment of atherosclerosis.


Subject(s)
Cholic Acids/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation/drug effects , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , Animals , Arteriosclerosis/drug therapy , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Hepatocytes , Humans , Hydroxycholesterols/pharmacology , Ligands , Liver X Receptors , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred C57BL , Orphan Nuclear Receptors , RNA, Messenger/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Steroid/drug effects , Receptors, Steroid/genetics , Sterol Regulatory Element Binding Protein 1 , Transcription Factors/genetics , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...