Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 1): 051302, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11735913

ABSTRACT

We have performed a systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions. In this regime, the bulk packing fraction (away from the top free surface and the bottom plate boundary) remains constant as a function of depth z, of the pile. The velocity profile in the direction of flow vx(z) scales with height of the pile H, according to vx(z) proportional to H(alpha), with alpha=1.52+/-0.05. However, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture all of the features evidenced in the simulations.

2.
Article in English | MEDLINE | ID: mdl-11970452

ABSTRACT

We measure the increase in the maximum stable angle of a sandpile, theta(c), with the volume fraction, phi of a liquid added to cause cohesion between the grains. For two different liquids, tan theta(c) does not apparently scale with the air-liquid surface tension at low phi, whereas it does at higher phi. This suggests that the liquid forms menisci at asperities on the surfaces of the grains before filling cohesive menisci at intergrain contact points. In this cohesive limit, theta(c)(phi) agrees with a surface roughness theory. Electron and fluorescence microscopy of the dry and wet surfaces of the grains support this model.

3.
Science ; 258(5083): 761-6, 1992 Oct 30.
Article in English | MEDLINE | ID: mdl-17777027

ABSTRACT

Suspensions of polarizable particles in nonpolarizable solvents form fibrillated structures in strong electric fields. The resulting increase in viscosity of these "electrorheological" fluids can couple electrical to hydraulic components in a servomechanism. The physical properties of these fluids are unusual owing to the long-range, anisotropic nature of the interparticle forces. Immediately after the electric field is applied, elongated chains or columns of particles form parallel to the field. This structure then coarsens as a result of thermal forces between the columns. In shear flows, fluids show yielding behavior at low stresses followed by shear-thinning behavior at higher stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...