Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Extracell Vesicle ; 12022 Dec.
Article in English | MEDLINE | ID: mdl-37503329

ABSTRACT

Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.

2.
Mol Oncol ; 15(5): 1486-1506, 2021 05.
Article in English | MEDLINE | ID: mdl-33469989

ABSTRACT

Expression of the RE1-silencing transcription factor (REST), a master regulator of neurogenesis, is elevated in medulloblastoma (MB) tumors. A cell-intrinsic function for REST in MB tumorigenesis is known. However, a role for REST in the regulation of MB tumor microenvironment has not been investigated. Here, we implicate REST in remodeling of the MB vasculature and describe underlying mechanisms. Using RESTTG mice, we demonstrate that elevated REST expression in cerebellar granule cell progenitors, the cells of origin of sonic hedgehog (SHH) MBs, increased vascular growth. This was recapitulated in MB xenograft models and validated by transcriptomic analyses of human MB samples. REST upregulation was associated with enhanced secretion of proangiogenic factors. Surprisingly, a REST-dependent increase in the expression of the proangiogenic transcription factor E26 oncogene homolog 1, and its target gene encoding the vascular endothelial growth factor receptor-1, was observed in MB cells, which coincided with their localization at the tumor vasculature. These observations were confirmed by RNA-Seq and microarray analyses of MB cells and SHH-MB tumors. Thus, our data suggest that REST elevation promotes vascular growth by autocrine and paracrine mechanisms.


Subject(s)
Cerebellar Neoplasms/blood supply , Medulloblastoma/blood supply , Neovascularization, Pathologic/genetics , Proto-Oncogene Protein c-ets-1/physiology , Repressor Proteins/physiology , Animals , Cell Proliferation/genetics , Cells, Cultured , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Human Umbilical Vein Endothelial Cells , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neovascularization, Pathologic/pathology , Tumor Microenvironment/genetics
3.
J Neurooncol ; 150(1): 35-46, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32816225

ABSTRACT

INTRODUCTION: In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS: Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION: The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , DNA Methylation , Epigenesis, Genetic , Humans , Medulloblastoma/genetics , Medulloblastoma/therapy , MicroRNAs/genetics
4.
Sci Signal ; 12(565)2019 01 22.
Article in English | MEDLINE | ID: mdl-30670636

ABSTRACT

In medulloblastomas (MBs), the expression and activity of RE1-silencing transcription factor (REST) is increased in tumors driven by the sonic hedgehog (SHH) pathway, specifically the SHH-α (children 3 to 16 years) and SHH-ß (infants) subgroups. Neuronal maturation is greater in SHH-ß than SHH-α tumors, but both correlate with poor overall patient survival. We studied the contribution of REST to MB using a transgenic mouse model (RESTTG ) wherein conditional NeuroD2-controlled REST transgene expression in lineage-committed Ptch1 +/- cerebellar granule neuron progenitors (CGNPs) accelerated tumorigenesis and increased penetrance and infiltrative disease. This model revealed a neuronal maturation context-specific antagonistic interplay between the transcriptional repressor REST and the activator GLI1 at Ptch1 Expression of Arrb1, which encodes ß-arrestin1 (a GLI1 inhibitor), was substantially reduced in proliferating and, to a lesser extent, lineage-committed RESTTG cells compared with wild-type proliferating CGNPs. Lineage-committed RESTTG cells also had decreased GLI1 activity and increased histone H3K9 methylation at the Ptch1 locus, which correlated with premature silencing of Ptch1 These cells also had decreased expression of Pten, which encodes a negative regulator of the kinase AKT. Expression of PTCH1 and GLI1 were less, and ARRB1 was somewhat greater, in patient SHH-ß than SHH-α MBs, whereas that of PTEN was similarly lower in both subtypes than in others. Inhibition of histone modifiers or AKT reduced proliferation and induced apoptosis, respectively, in cultured REST-high MB cells. Our findings linking REST to differentiation-specific chromatin remodeling, PTCH1 silencing, and AKT activation in MB tissues reveal potential subgroup-specific therapeutic targets for MB patients.


Subject(s)
Cerebellar Neoplasms/genetics , Chromatin/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Patched-1 Receptor/genetics , Proto-Oncogene Proteins c-akt/genetics , Repressor Proteins/genetics , Adult , Animals , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Child , Chromatin/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Humans , Infant , Male , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Neoplasm Staging , Patched-1 Receptor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Transplantation, Heterologous
5.
Cancer Biol Ther ; 18(3): 158-165, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28121262

ABSTRACT

Pancreatic cancer presents with a dismal mortality rate and is in urgent need of methods for early detection with potential for timely intervention. All living cells, including cancer cells, generate exosomes. We previously discovered double stranded genomic DNA in exosomes derived from the circulation of pancreatic cancer patients, which enabled the detection of prevalent mutations associated with the disease. Here, we report a proof-of-concept study that demonstrates the potential clinical utility of circulating exosomal DNA for identification of KRASG12D and TP53R273H mutations in patients with pancreas-associated pathologies, including pancreatic ductal adenocarcinoma (PDAC), chronic pancreatitis (CP) and intraductal papillary mucinous neoplasm (IPMN), and in healthy human subjects. In 48 clinically annotated serum samples from PDAC patients, digital PCR analyses of exosomal DNA identified KRASG12D mutation in 39.6% of cases, and TP53R273H mutation in 4.2% of cases. KRASG12D and TP53R273H mutations were also detected in exosomal DNA from IPMN patients (2 out of 7 with KRASG12D, one of which also co-presented with TP53R273H mutation). Circulating exosomal DNA in 5 out of 9 CP patients enabled the detection of KRASG12D mutation. In 114 healthy subject-derived circulating exosomal DNA, 2.6% presented with KRASG12D mutation and none with TP53R273H mutation. This study highlights the value of circulating exosomal DNA for a rapid, low-cost identification of cancer driving mutations. The identification of mutations in IPMN patients and healthy subjects suggests that liquid biopsies may allow potential assessment of cancer risk but with a cautionary note that detection of clinical cancer cannot be assumed.


Subject(s)
DNA, Neoplasm/genetics , DNA/genetics , Exosomes/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Case-Control Studies , Cell Line, Tumor , DNA/blood , DNA, Neoplasm/blood , Humans , Mutation , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Polymerase Chain Reaction/methods
6.
Glycobiology ; 25(10): 1027-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26175457

ABSTRACT

The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.


Subject(s)
Epidermal Growth Factor/physiology , Polysaccharides/physiology , Animals , Epidermal Growth Factor/chemistry , Glycosylation , Growth and Development , Humans , Protein Folding , Protein Structure, Tertiary , Receptors, Notch/physiology , Repetitive Sequences, Amino Acid , Signal Transduction
7.
PLoS Genet ; 10(11): e1004795, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25412384

ABSTRACT

The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved.


Subject(s)
Drosophila Proteins/genetics , Eye Proteins/genetics , Glucosyltransferases/genetics , Photoreceptor Cells/metabolism , Retinitis Pigmentosa/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Eye Proteins/metabolism , Gene Knock-In Techniques , Glucose/metabolism , Glucosyltransferases/metabolism , Glycosylation , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Photoreceptor Cells/pathology , Receptors, Notch/genetics , Retinitis Pigmentosa/pathology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...