Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 213, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30631080

ABSTRACT

The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.

2.
Nat Commun ; 9(1): 3707, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213928

ABSTRACT

Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.


Subject(s)
Genetic Predisposition to Disease , Multiple Myeloma/genetics , Polymorphism, Single Nucleotide , Bayes Theorem , Chromatin/chemistry , Chromatin Immunoprecipitation , Female , Gene Expression Regulation , Genome-Wide Association Study , Genotype , Humans , Male , Promoter Regions, Genetic , Quality Control , Quantitative Trait Loci , Risk , White People/genetics
3.
Blood Adv ; 1(10): 619-623, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-29296704

ABSTRACT

Although common risk alleles for multiple myeloma (MM) were recently identified, their contribution to familial MM is unknown. Analyzing 38 familial cases identified primarily by linking Swedish nationwide registries, we demonstrate an enrichment of common MM risk alleles in familial compared with 1530 sporadic cases (P = 4.8 × 10-2 and 6.0 × 10-2, respectively, for 2 different polygenic risk scores) and 10 171 population-based controls (P = 1.5 × 10-4 and 1.3 × 10-4, respectively). Using mixture modeling, we estimate that about one-third of familial cases result from such enrichments. Our results provide the first direct evidence for a polygenic etiology in a familial hematologic malignancy.

4.
Nat Commun ; 7: 12050, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27363682

ABSTRACT

Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10(-8)), 6q21 (rs9372120, P=9.09 × 10(-15)), 7q36.1 (rs7781265, P=9.71 × 10(-9)), 8q24.21 (rs1948915, P=4.20 × 10(-11)), 9p21.3 (rs2811710, P=1.72 × 10(-13)), 10p12.1 (rs2790457, P=1.77 × 10(-8)), 16q23.1 (rs7193541, P=5.00 × 10(-12)) and 20q13.13 (rs6066835, P=1.36 × 10(-13)), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.


Subject(s)
Multiple Myeloma/genetics , Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Protein 5/genetics , Case-Control Studies , Chromosomal Proteins, Non-Histone , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Humans , Polycomb Repressive Complex 2/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
5.
Nat Commun ; 6: 7213, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26007630

ABSTRACT

Multiple myeloma (MM) is characterized by an uninhibited, clonal growth of plasma cells. While first-degree relatives of patients with MM show an increased risk of MM, the genetic basis of inherited MM susceptibility is incompletely understood. Here we report a genome-wide association study in the Nordic region identifying a novel MM risk locus at ELL2 (rs56219066T; odds ratio (OR)=1.25; P=9.6 × 10(-10)). This gene encodes a stoichiometrically limiting component of the super-elongation complex that drives secretory-specific immunoglobulin mRNA production and transcriptional regulation in plasma cells. We find that the MM risk allele harbours a Thr298Ala missense variant in an ELL2 domain required for transcription elongation. Consistent with a hypomorphic effect, we find that the MM risk allele also associates with reduced levels of immunoglobulin A (IgA) and G (IgG) in healthy subjects (P=8.6 × 10(-9) and P=6.4 × 10(-3), respectively) and, potentially, with an increased risk of bacterial meningitis (OR=1.30; P=0.0024).


Subject(s)
Immunoglobulin A/blood , Immunoglobulin G/blood , Multiple Myeloma/genetics , Proteins/genetics , Transcriptional Elongation Factors/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins , Meningitis, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...