Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(24): 244501, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31893865

ABSTRACT

We generate the equation of state (EOS) of solid parahydrogen (para-H2) using a path-integral Monte Carlo (PIMC) simulation based on a highly accurate first-principles adiabatic hindered rotor potential energy curve for the para-H2 dimer. The EOS curves for the fcc and hcp structures of solid para-H2 near the equilibrium density show that the hcp structure is the more stable of the two, in agreement with experiment. To accurately reproduce the structural and energy properties of solid para-H2, we eliminated by extrapolation the systematic errors associated with the choice of simulation parameters used in the PIMC calculation. We also investigate the temperature dependence of the EOS curves, and the invariance of the equilibrium density with temperature is satisfyingly reproduced. The pressure as a function of density and the compressibility as a function of pressure are both calculated using the obtained EOS and are compared with previous simulation results and experiments. We also report the first ever a priori prediction of a vibrational matrix shift from first-principles two-body potential functions, and its result for the equilibrium state agrees well with experiment.

2.
J Chem Phys ; 148(7): 074112, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29471653

ABSTRACT

We propose a variational approach for the calculation of the quantum entanglement entropy of assemblies of rotating dipolar molecules. A basis truncation scheme based on the total angular momentum quantum number is proposed. The method is tested on hydrogen fluoride (HF) molecules confined in C60 fullerene cages themselves trapped in a nanotube to form a carbon peapod. The rotational degrees of freedom of the HF molecules and dipolar interactions between neighboring molecules are considered in our model Hamiltonian. Both screened and unscreened dipoles are simulated and results are obtained for the ground state and one excited state that is expected to be accessible via a far-infrared collective excitation. The effect of basis truncation on energetic and entanglement properties is examined and discussed in terms of size extensivity. It is empirically found that for unscreened dipoles, a total angular momentum cutoff that increases linearly with the number of rotors is required in order to obtain proper system size scaling of the chemical potential and entanglement entropy. Recent experiments [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] suggest substantial screening of the HF dipole moment, so much smaller basis sets are required to obtain converged results in this realistic case. Static correlation functions are also computed and are shown to decay much quicker in the case of screened dipoles. Our variational results are also used to test the accuracy of perturbative and pairwise ansatz treatments.

3.
PLoS One ; 10(5): e0126383, 2015.
Article in English | MEDLINE | ID: mdl-25970184

ABSTRACT

We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.


Subject(s)
Animal Distribution , Algorithms , Animals , Behavior, Animal , Computer Simulation , Models, Biological , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...