Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38346480

ABSTRACT

BACKGROUND: Experience-dependent functional adaptation of nucleus accumbens (NAc) circuitry underlies the development and expression of reward-motivated behaviors. Parvalbumin-expressing GABAergic (gamma-aminobutyric acidergic) interneurons (PVINs) within the NAc are required for this process. Perineuronal nets (PNNs) are extracellular matrix structures enriched around PVINs that arise during development and have been proposed to mediate brain circuit stability. However, their function in the adult NAc is largely unknown. Here, we studied the developmental emergence and adult regulation of PNNs in the NAc of male and female mice and examined the cellular and behavioral consequences of reducing the PNN component brevican in NAc PVINs. METHODS: We characterized the expression of PNN components in mouse NAc using immunofluorescence and RNA in situ hybridization. We lowered brevican in NAc PVINs of adult mice using an intersectional viral and genetic method and quantified the effects on synaptic inputs to NAc PVINs and reward-motivated learning. RESULTS: PNNs around NAc PVINs were developmentally regulated and appeared during adolescence. In the adult NAc, PVIN PNNs were also dynamically regulated by cocaine. Transcription of the gene that encodes brevican was regulated in a cell type- and isoform-specific manner in the NAc, with the membrane-tethered form of brevican being highly enriched in PVINs. Lowering brevican in NAc PVINs of adult mice decreased their excitatory inputs and enhanced both short-term novel object recognition and cocaine-induced conditioned place preference. CONCLUSIONS: Regulation of brevican in NAc PVINs of adult mice modulates their excitatory synaptic drive and sets experience thresholds for the development of motivated behaviors driven by rewarding stimuli.

2.
Sci Adv ; 7(42): eabg6702, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652936

ABSTRACT

In the coming decade, astronauts will travel back to the moon in preparation for future Mars missions. Exposure to galactic cosmic radiation (GCR) is a major obstacle for deep space travel. Using multivariate principal components analysis, we found sex-dimorphic responses in mice exposed to accelerated charged particles to simulate GCR (GCRsim); males displayed impaired spatial learning, whereas females did not. Mechanistically, these GCRsim-induced learning impairments corresponded with chronic microglia activation and synaptic alterations in the hippocampus. Temporary microglia depletion shortly after GCRsim exposure mitigated GCRsim-induced deficits measured months after the radiation exposure. Furthermore, blood monocyte levels measured early after GCRsim exposure were predictive of the late learning deficits and microglia activation measured in the male mice. Our findings (i) advance our understanding of charged particle­induced cognitive challenges, (ii) provide evidence for early peripheral biomarkers for identifying late cognitive deficits, and (iii) offer potential therapeutic strategies for mitigating GCR-induced cognitive loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...