Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Vasc Res ; : 1-15, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749406

ABSTRACT

INTRODUCTION: Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS: This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION: It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.

2.
J Appl Physiol (1985) ; 136(6): 1352-1363, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601994

ABSTRACT

Although existing literature supports associations between cerebrovascular dysfunction and the emergence of depression and depressive symptoms, relatively little is known about underlying mechanistic pathways that may explain potential relationships. As such, an integrated understanding of these relationships in preclinical models could provide insight into the nature of the relationship, basic mechanistic linkages, and areas in which additional investment should be targeted. This scoping review was conducted in MEDLINE, EMBASE, and Scopus to outline the relationship between depressive symptoms and cerebrovascular dysfunction in preclinical animal models with an additional focus on the areas above. From 3,438 articles initially identified, 15 studies met the inclusion criteria and were included in the review. All studies reported a positive association between the severity of markers for cerebrovascular dysfunction and that for depressive symptoms in rodent models and this spanned all models for either pathology. Specific mechanistic links between the two such as chronic inflammation, elevated vascular oxidant stress, and altered serotonergic signaling were highlighted. Notably, almost all studies addressed outcomes in male animals, with a near complete lack of data from females, and there was little consistency in terms of how cerebrovascular dysfunction was assessed. Across nearly all studies was a lack of clarity for any "cause and effect" relationship between depressive symptoms and cerebrovascular dysfunction. At this time, it is reasonable to conclude that a correlative relationship clearly exists between the two, and future investigation will be required to parse out more specific aspects of this relationship.NEW & NOTEWORTHY This scoping review presents a structured evaluation of all relevant existing literature linking cerebral vasculopathy to depressive symptom emergence in preclinical models. Results support a definite connection between vascular dysfunction and depressive symptoms, highlighting the importance of chronic elevations in inflammation and oxidant stress, and impaired serotonergic signaling. The review also identified significant knowledge gaps addressing male versus female differences and limited clear mechanistic links between cerebral vasculopathy and depressive symptoms.


Subject(s)
Cerebrovascular Disorders , Depression , Disease Models, Animal , Animals , Depression/physiopathology , Cerebrovascular Disorders/physiopathology , Humans , Oxidative Stress/physiology , Cerebrovascular Circulation/physiology
3.
J Appl Physiol (1985) ; 136(1): 122-140, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37969083

ABSTRACT

Previous studies have suggested that the loss of microvessel density in the peripheral circulation with evolving metabolic disease severity represents a significant contributor to impaired skeletal muscle oxygenation and fatigue-resistance. Based on this and our recent work, we hypothesized that cerebral microvascular rarefaction was initiated from the increased prooxidant and proinflammatory environment with metabolic disease and is predictive of the severity of the emergence of depressive symptoms in obese Zucker rats (OZRs). In male OZR, cerebrovascular rarefaction followed the emergence of elevated oxidant and inflammatory environments characterized by increased vascular production of thromboxane A2 (TxA2). The subsequent emergence of depressive symptoms in OZR was associated with the timing and severity of the rarefaction. Chronic intervention with antioxidant (TEMPOL) or anti-inflammation (pentoxifylline) therapy blunted the severity of rarefaction and depressive symptoms, although the effectiveness was limited. Blockade of TxA2 production (dazmegrel) or action (SQ-29548) resulted in a stronger therapeutic effect, suggesting that vascular production and action represent a significant contributor to rarefaction and the emergence of depressive symptoms with chronic metabolic disease (although other pathways clearly contribute as well). A de novo biosimulation of cerebrovascular oxygenation in the face of progressive rarefaction demonstrates the increased probability of generating hypoxic regions within the microvascular networks, which could contribute to impaired neuronal metabolism and the emergence of depressive symptoms. The results of the present study also implicate the potential importance of aggressive prodromic intervention in reducing the severity of chronic complications arising from metabolic disease.NEW & NOTEWORTHY With clinical studies linking vascular disease risk to depressive symptom emergence, we used obese Zucker rats, a model of chronic metabolic disease, to identify potential mechanistic links between these two negative outcomes. Depressive symptom severity correlated with the extent of cerebrovascular rarefaction, after increased vascular oxidant stress/inflammation and TxA2 production. Anti-TxA2 interventions prevasculopathy blunted rarefaction and depressive symptoms, while biosimulation indicated that cerebrovascular rarefaction increased hypoxia within capillary networks as a potential contributing mechanism.


Subject(s)
Metabolic Diseases , Metabolic Syndrome , Microvascular Rarefaction , Animals , Rats , Male , Thromboxanes , Depression , Rats, Zucker , Obesity/metabolism , Oxidants
4.
J Vasc Res ; 61(1): 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38096804

ABSTRACT

BACKGROUND: Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Arteriolar tone regulation plays a critical role in maintaining appropriate organ blood flow and perfusion distribution, which is vital for both vascular and overall health. SUMMARY: This scoping review aimed to explore the interplay between five major regulators of arteriolar tone: metabolism (adenosine), adrenergic control (norepinephrine), myogenic activation (intravascular pressure), perivascular oxygen tension, and intraluminal flow rates. Specifically, the aim was to address how arteriolar reactivity changes in the presence of other vasoactive stimuli and by what mechanisms. The review focused on animal studies that investigated the impact of combining two or more of these stimuli on arteriolar diameter. Overall, 848 articles were identified through MEDLINE and EMBASE database searches, and 38 studies were included in the final review. KEY MESSAGES: The results indicate that arteriolar reactivity is influenced by multiple factors, including competitive processes, structural limitations, and indirect interactions among stimuli. Additionally, the review identified a lack of research involving female animal models and limited insight into the interaction of molecular signaling pathways, which represent gaps in the literature.


Subject(s)
Hemodynamics , Vasoconstriction , Female , Animals , Vasoconstriction/physiology , Arterioles/physiology , Norepinephrine , Muscle, Smooth, Vascular/metabolism
5.
J Vasc Res ; 60(5-6): 245-272, 2023.
Article in English | MEDLINE | ID: mdl-37769627

ABSTRACT

INTRODUCTION: Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. METHODS: The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. RESULTS: Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. CONCLUSION: These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.


Subject(s)
Adenosine , Muscle, Skeletal , Arterioles/physiology , Muscle, Skeletal/blood supply , Norepinephrine , Adrenergic Agents
6.
J Vasc Res ; 60(1): 12-68, 2023.
Article in English | MEDLINE | ID: mdl-36843014

ABSTRACT

Research involving human subjects in ambulatory settings is a critical link in the chain comprising translational research, spanning preclinical research to human subject and patient cohort studies. There are presently a wide array of techniques and approaches available to investigators wishing to study blood flow, perfusion, and vascular structure and function in human subjects. In this multi-sectioned review, we discuss capillaroscopy, carotid intima-media thickness, flow-mediated dilation, laser Doppler flowmetry, near-infrared spectroscopy, peripheral arterial tonometry, pulse wave velocity, retinal fundus imaging, and vascular plethysmography. Each section contains a general overview and the physical basis of the technique followed by a discussion of the procedures involved and the necessary equipment, with attention paid to specific requirements or limitations. Subsequently, we detail which aspects of vascular function can be studied with a given technique, the analytical approach to the collected data, and the appropriate application and limitation(s) to the interpretation of the data collected. Finally, a modified scoping review provides a summary of how each assessment technique has been applied in previous studies. It is anticipated that this review will provide an efficient source of information and insight for preclinical investigators seeking to add translational aspects to their research programs.


Subject(s)
Carotid Intima-Media Thickness , Pulse Wave Analysis , Humans , Pulse Wave Analysis/methods , Translational Research, Biomedical , Blood Flow Velocity/physiology , Perfusion
7.
Front Pharmacol ; 14: 1104568, 2023.
Article in English | MEDLINE | ID: mdl-36762103

ABSTRACT

While a thorough understanding of microvascular function in health and how it becomes compromised with progression of disease risk is critical for developing effective therapeutic interventions, our ability to accurately assess the beneficial impact of pharmacological interventions to improve outcomes is vital. Here we introduce a novel Vascular Health Index (VHI) that allows for simultaneous assessment of changes to vascular reactivity/endothelial function, vascular wall mechanics and microvessel density within cerebral and skeletal muscle vascular networks with progression of metabolic disease in obese Zucker rats (OZR); under control conditions and following pharmacological interventions of clinical relevance. Outcomes are compared to "healthy" conditions in lean Zucker rats. We detail the calculation of vascular health index, full assessments of validity, and describe progressive changes to vascular health index over the development of metabolic disease in obese Zucker rats. Further, we detail the improvement to cerebral and skeletal muscle vascular health index following chronic treatment of obese Zucker rats with anti-hypertensive (15%-52% for skeletal muscle vascular health index; 12%-48% for cerebral vascular health index; p < 0.05 for both), anti-dyslipidemic (13%-48% for skeletal muscle vascular health index; p < 0.05), anti-diabetic (12%-32% for cerebral vascular health index; p < 0.05) and anti-oxidant/inflammation (41%-64% for skeletal muscle vascular health index; 29%-42% for cerebral vascular health index; p < 0.05 for both) drugs. The results present the effectiveness of mechanistically diverse interventions to improve cerebral or skeletal muscle vascular health index in obese Zucker rats and provide insight into the superiority of some pharmacological agents despite similar effectiveness in terms of impact on intended targets. In addition, we demonstrate the utility of including a wider, more integrative approach to the study of microvasculopathy under settings of elevated disease risk and following pharmacological intervention. A major benefit of integrating vascular health index is an increased understanding of the development, timing and efficacy of interventions through greater insight into integrated microvascular function in combination with individual, higher resolution metrics.

8.
Front Physiol ; 13: 1071813, 2022.
Article in English | MEDLINE | ID: mdl-36561210

ABSTRACT

The study of vascular function across conditions has been an intensive area of investigation for many years. While these efforts have revealed many factors contributing to vascular health, challenges remain for integrating results across research groups, animal models, and experimental conditions to understand integrated vascular function. As such, the insights attained in clinical/population research from linking datasets, have not been fully realized in the basic sciences, thus frustrating advanced analytics and complex modeling. To achieve comparable advances, we must address the conceptual challenge of defining/measuring integrated vascular function and the technical challenge of combining data across conditions, models, and groups. Here, we describe an approach to establish and validate a composite metric of vascular function by comparing parameters of vascular function in metabolic disease (the obese Zucker rat) to the same parameters in age-matched, "healthy" conditions, resulting in a common outcome measure which we term the vascular health index (VHI). VHI allows for the integration of datasets, thus expanding sample size and permitting advanced modeling to gain insight into the development of peripheral and cerebral vascular dysfunction. Markers of vascular reactivity, vascular wall mechanics, and microvascular network density are integrated in the VHI. We provide a detailed presentation of the development of the VHI and provide multiple measures to assess face, content, criterion, and discriminant validity of the metric. Our results demonstrate how the VHI captures multiple indices of dysfunction in the skeletal muscle and cerebral vasculature with metabolic disease and provide context for an integrated understanding of vascular health under challenged conditions.

9.
Am J Physiol Heart Circ Physiol ; 323(3): H475-H489, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35904886

ABSTRACT

The study of peripheral vasculopathy with chronic metabolic disease is challenged by divergent contributions from spatial (the level of resolution or specific tissue being studied) and temporal origins (evolution of the developing impairments in time). Over many years of studying the development of skeletal muscle vasculopathy and its functional implications, we may be at the point of presenting an integrated conceptual model that addresses these challenges within the obese Zucker rat (OZR) model. At the early stages of metabolic disease, where systemic markers of elevated cardiovascular disease risk are present, the only evidence of vascular dysfunction is at postcapillary and collecting venules, where leukocyte adhesion/rolling is elevated with impaired venular endothelial function. As metabolic disease severity and duration increases, reduced microvessel density becomes evident as well as increased variability in microvascular hematocrit. Subsequently, hemodynamic impairments to distal arteriolar networks emerge, manifesting as increasing perfusion heterogeneity and impaired arteriolar reactivity. This retrograde "wave of dysfunction" continues, creating a condition wherein deficiencies to the distal arteriolar, capillary, and venular microcirculation stabilize and impairments to proximal arteriolar reactivity, wall mechanics, and perfusion distribution evolve. This proximal arteriolar dysfunction parallels increasing failure in fatigue resistance, hyperemic responses, and O2 uptake within self-perfused skeletal muscle. Taken together, these results present a conceptual model for the retrograde development of peripheral vasculopathy with chronic metabolic disease and provide insight into the timing and targeting of interventional strategies to improve health outcomes.NEW & NOTEWORTHY Working from an established database spanning multiple scales and times, we studied progression of peripheral microvascular dysfunction in chronic metabolic disease. The data implicate the postcapillary venular endothelium as the initiating site for vasculopathy. Indicators of dysfunction, spanning network structures, hemodynamics, vascular reactivity, and perfusion progress in an insidious retrograde manner to present as functional impairments to muscle blood flow and performance much later. The silent vasculopathy progression may provide insight into clinical treatment challenges.


Subject(s)
Metabolic Diseases , Metabolic Syndrome , Peripheral Vascular Diseases , Animals , Metabolic Syndrome/metabolism , Microcirculation/physiology , Muscle, Skeletal/blood supply , Obesity/complications , Rats , Rats, Zucker
10.
J Vasc Res ; 59(1): 1-15, 2022.
Article in English | MEDLINE | ID: mdl-34535606

ABSTRACT

Metabolic syndrome (MetS) is a complex pathological state consisting of metabolic risk factors such as hypertension, insulin resistance, and obesity. The interconnectivity of cellular pathways within various biological systems suggests that each individual component of MetS may share common pathological sources. Additionally, MetS is closely associated with vasculopathy, including a reduction in microvessel density (MVD) (rarefaction) and elevated risk for various cardiovascular diseases. Microvascular impairments may contribute to perfusion-demand mismatch, where local metabolic needs are insufficiently met due to the lack of nutrient and oxygen supply, thus creating pathological positive-feedback loops and furthering the progression of disease. Sexual dimorphism is evident in these underlying cellular mechanisms, which places males and females at different levels of risk for cardiovascular disease and acute ischemic events. Estrogen exhibits protective effects on the endothelium of pre-menopausal women, while androgens may be antagonistic to cardiovascular health. This review examines MetS and its influences on MVD, as well as sex differences relating to the components of MetS and cardiovascular risk profiles. Finally, translational relevance and interventions are discussed in the context of these sex-based differences.


Subject(s)
Cardiovascular Diseases/etiology , Metabolic Syndrome/pathology , Microvascular Density , Microvascular Rarefaction , Microvessels/pathology , Animals , Cardiometabolic Risk Factors , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Female , Humans , Male , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Microvessels/metabolism , Prognosis , Risk Assessment , Sex Characteristics , Sex Factors
11.
J Vasc Res ; 58(5): 286-300, 2021.
Article in English | MEDLINE | ID: mdl-33971663

ABSTRACT

The obese Zucker rat (OZR) manifests multiple risk factors for impaired cerebrovascular function, including hypertension and insulin resistance although how they combine to produce integrated vascular function is unclear. As studies have suggested that myogenic activation (MA) severity for middle cerebral arteries (MCAs) may be proportional to hypertension severity, we hypothesized that MA will negatively correlate with dilator reactivity in OZR. MA of MCA from OZR was divided into low, medium, and high based on the slope of MA, while MCA reactivity and vascular metabolite bioavailability were assessed in all groups. Endothelium-dependent dilation of MCA in OZR was attenuated and correlated with the MA slope. Treatment of OZR MCA with TEMPOL (antioxidant) improved dilation in low or medium MA groups, but had less impact on high MA. Alternatively, treatment with gadolinium to normalize MA in OZR had reduced impact on dilator reactivity in MCA from low and medium MA groups, but improved responses in the high group. Treatment with both agents resulted in dilator responses that were comparable across all groups. These results suggest that, under conditions with stronger MA, endothelial function may receive some protection despite the environment, potentially from the ability of MCA to reduce wall tension despite increased pressure.


Subject(s)
Cerebrovascular Circulation , Endothelium, Vascular/physiopathology , Metabolic Syndrome/physiopathology , Middle Cerebral Artery/physiopathology , Muscle, Smooth, Vascular/physiopathology , Vascular Resistance , Vasodilation , Animals , Antioxidants/pharmacology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Metabolic Syndrome/metabolism , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Rats, Zucker , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology
12.
Exp Physiol ; 105(9): 1431-1439, 2020 09.
Article in English | MEDLINE | ID: mdl-32045062

ABSTRACT

NEW FINDINGS: What is the topic of this review? Altered perfusion distribution at skeletal muscle arteriolar bifurcations and how this is modified by development of chronic metabolic disease. What advances does it highlight? The outcome created is a distribution of erythrocytes in the distal microcirculation that is characterized by increased spatial heterogeneity and reduced flexibility such that mass transport/exchange within the network is impaired, with limited ability to respond to imposed challenges. This advances our understanding of how altered vascular structure and function with metabolic disease impairs perfusion to skeletal muscle at a level of resolution that would not be identified through bulk flow responses. ABSTRACT: This review is based on the presentation 'Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease', given at the Symposium 'Understanding Complex Behaviours in the Microcirculation: from Blood Flow to Oxygenation' during the Annual Meeting of the Physiological Society at the Aberdeen Exhibition and Conference Centre in Aberdeen, UK in July 2019. The past years of dedicated investigation on linkages between vascular (dys)function under conditions of elevated cardiovascular disease risk and tissue/organ performance have produced results and insights that frequently suffer from limited correlation and causation. Reaching out from this challenge, it was proposed that this may reflect a 'level of resolution' argument and that altered haemodynamic behaviour in vascular networks could be a stronger predictor of functional outcomes than higher resolution measures. Using this approach, we have determined that an attractor that describes the spatial and temporal shift in perfusion distribution at successive arteriolar bifurcations within the skeletal muscle is a strong predictor of functional outcomes within animals and provides novel insight into fundamental mechanistic contributors to altered patterns of intra-muscular perfusion. This article focuses on the applicability and utility of the attractor in models of cardiovascular and metabolic disease risk of increasing severity. We will also discuss the utility of the attractor in terms of understanding the effectiveness of aggressive interventions for reversing established vasculopathy and perfusion impairments.


Subject(s)
Arterioles , Metabolic Diseases/physiopathology , Microcirculation , Muscle, Skeletal/blood supply , Animals , Erythrocytes , Hemodynamics , Humans , Rats, Zucker , Regional Blood Flow
13.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R149-R159, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091154

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a prevalent pathology associated with elevated cerebrovascular disease risk. We determined wall mechanics and vascular reactivity in ex vivo middle cerebral arteries (MCA) from male Goto-Kakizaki rats (GK; ~17 wk old) versus control Wistar Kyoto rats (WKY) to test the hypothesis that the diabetic environment in GK, in the absence of obesity and other comorbidities, leads to endothelial dysfunction and impaired vascular tone regulation. Dilation of MCA following challenge with acetylcholine and hypoxia was blunted in MCA from GK versus WKY, due to lower nitric oxide bioavailability and altered arachidonic acid metabolism, whereas myogenic activation and constrictor responses to serotonin were unchanged. MCA wall distensibility and cross-sectional area were not different between GK and WKY, suggesting that wall mechanics were unchanged at this age, supported by the determination that MCA dilation to sodium nitroprusside was also intact. With the use of ex vivo aortic rings as a bioassay, altered vascular reactivity determined in MCA was paralleled by relaxation responses in artery segments from GK, whereas measurements of vasoactive metabolite production indicated a loss of nitric oxide and prostacyclin bioavailability and an increased thromboxane A2 production with both methacholine challenge and hypoxia. These results suggest that endothelium-dependent dilator reactivity of MCA in GK is impaired with T2DM, and that this impairment is associated with the genesis of a prooxidant/pro-inflammatory condition with diabetes mellitus. The restriction of vascular impairments to endothelial function only, at this age and development, provide insight into the severity of multimorbid conditions of which T2DM is only one constituent.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Endothelium, Vascular/physiopathology , Middle Cerebral Artery/physiology , Nitric Oxide/metabolism , Animals , Aorta , Blood Pressure , Diabetes Mellitus, Type 2/pathology , Male , Middle Cerebral Artery/drug effects , Nitroprusside/pharmacology , Rats , Rats, Inbred Strains , Vasodilation , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...