Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Saf Health Work ; 12(1): 10-19, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732524

ABSTRACT

BACKGROUND: Traditional safety concept, which is called Safety-I, and its relevant methods and models have much contributed toward enhancing the safety of industrial systems. However, they have proved insufficient to be applied to complex socio-technical systems. As an alternative, Safety-II and resilience engineering have emerged and gained much attention for the last two decades. However, it seems that safety professionals have still difficulty understanding their fundamental concepts and methods. Accordingly, it is necessary to offer an introductory guide to them that helps safety professionals grasp them correctly in consideration of their current practices. METHODS: This article firstly explains the limitations of Safety-I and how Safety-II can resolve them from the four points of view. Next, the core concepts of resilience engineering and Functional Resonance Analysis Method are described. RESULTS: Workers' performance adjustment and performance variability due to it should be the basis for understanding human-related accidents in socio-technical systems. It should be acknowledged that successful and failed work performance have the same causes. However, they are not well considered in the traditional safety concept; in contrast, Safety-II and resilience engineering have conceptual bases and practical approaches to reflect them systematically. CONCLUSION: It is necessary to move from a find-and-fix and reactive approach to a proactive approach to safety management. Safety-II and resilience engineering give a set of useful concepts and methods for proactive safety management. However, if necessary, Safety-I methods need to be properly used for situations where they can still be useful as well.

2.
Appl Ergon ; 45(6): 1518-29, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24861636

ABSTRACT

The principle of frequency separation is a design method to display different information or feedback in accordance with the frequency of interaction between users and systems. This principle can be usefully applied to the design of knobs. Particularly, their rotation speed can be a meaningful criterion for applying the principle. Hence a knob can be developed, which shows change rates varying depending on its rotation speed. Such a knob would be more efficient than conventional knobs with constant change rate. We developed a prototype of frequency-separated knobs that has different combinations of the number of rotation speed steps and the size of the variation of change rate. With this prototype, we conducted an experiment to examine whether a speed frequency-separated knob enhances users' task performance. The results showed that the newly designed knob was effective in enhancing task performance, and that task efficiency was the best when its change rate increases exponentially and its rotation speed has three steps. We conducted another experiment to investigate how a more rapid exponential increase of change rate and a more number of steps of rotation speed influence users' task performance. The results showed that merely increasing both the size of the variation of change rates and the number of speed steps did not result in better task performance. Although two experimental results cannot easily be generalized to other contexts, they still offer practical information useful for designing a speed frequency-separated knob in various consumer electronics and control panels of industrial systems.


Subject(s)
Equipment Design , Ergonomics , Feedback , Humans , Rotation , Touch
3.
IEEE Trans Vis Comput Graph ; 18(12): 2449-56, 2012 Dec.
Article in English | MEDLINE | ID: mdl-26357153

ABSTRACT

Recently there has been increasing research interest in displaying graphs with curved edges to produce more readable visualizations. While there are several automatic techniques, little has been done to evaluate their effectiveness empirically. In this paper we present two experiments studying the impact of edge curvature on graph readability. The goal is to understand the advantages and disadvantages of using curved edges for common graph tasks compared to straight line segments, which are the conventional choice for showing edges in node-link diagrams. We included several edge variations: straight edges, edges with different curvature levels, and mixed straight and curved edges. During the experiments, participants were asked to complete network tasks including determination of connectivity, shortest path, node degree, and common neighbors. We also asked the participants to provide subjective ratings of the aesthetics of different edge types. The results show significant performance differences between the straight and curved edges and clear distinctions between variations of curved edges.

SELECTION OF CITATIONS
SEARCH DETAIL
...