Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619447

ABSTRACT

BACKGROUND: Understanding the relationship between perceived sensory attributes and measurable instrumental properties is crucial for replicating the distinct textures of meat in plant-based meat analogs. In this study, plant-based patties composed of textured vegetable protein (TVP) and 10%, 20% and 30% TVPs were substituted with fibers from sweet potato stem (SPS), and their instrumental texture and sensory properties were evaluated. RESULTS: Samples with 20% SPS showed hardness, cohesiveness and chewiness, which are the mechanical indicators most similar to those of meat. A descriptive sensory analysis by ten trained participants indicated that the SPS-supplemented meat analog patties exhibited characteristics similar to pork patties in terms of firmness, toughness, cohesiveness and smoothness compared to the TVP-only sample. A strong positive correlation between instrumental hardness and sensory firmness was observed (P < 0.01); however, cohesiveness, springiness and chewiness did not show any correlation between instrumental and sensory analyses. Warner-Bratzler shear force (WBSF) values showed positive correlations with sensory cohesiveness, chewiness, toughness, fibrousness, moistness, firmness and springiness (P < 0.05). CONCLUSION: The results demonstrated the feasibility of physically treated fibers from SPS as a partial substitute for TVP in developing meat analogs. Additionally, this study suggested that instrumental hardness and WBSF measurements can be sound parameters for representing sensory texture characteristics while further developing plant-based meat analogs. © 2024 Society of Chemical Industry.

2.
J Sci Food Agric ; 104(10): 6166-6173, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38456829

ABSTRACT

BACKGROUND: In the quest for sustainable food ingredients, the present study delves into the potential of a tri-component hydrocolloid blend, comprising gellan gum (GG), soy protein isolate (SPI) and maltodextrin (MD), as a replacement for egg white in meringue production. The research aims to elucidate the intricate physical properties of meringue containing this tri-component structure, focusing on foaming dynamics, rheological behavior and the textural properties of the resulting meringue cookies. RESULTS: Experiments were conducted with various hydrocolloids (k-carrageenan, GG, and locust bean gum) and GG was identified as optimal for improving foaming capacity and foaming stability. Rheological evaluations showed a positive correlation between increased GG concentration within the tri-component matrix and an increase in both storage modulus (G') and loss modulus (G"), indicating improved structural integrity. Furthermore, a comparative analysis of the texture profiles of cookies prepared with this blend highlighted the ability of higher GG concentrations to satisfactorily replicate the tactile and visual qualities of traditional egg white-based meringues. This result was particularly evident compared to formulations utilizing solely SPI or the combined SPI-MD configuration. CONCLUSION: Conclusively, the results of the present study highlight the significant potential of the GG-SPI-MD tri-component structure to closely mimic the critical properties of egg white, thus offering a promising plant-based alternative for meringue production. © 2024 Society of Chemical Industry.


Subject(s)
Colloids , Egg White , Polysaccharides, Bacterial , Polysaccharides , Rheology , Soybean Proteins , Soybean Proteins/chemistry , Polysaccharides/chemistry , Polysaccharides, Bacterial/chemistry , Colloids/chemistry , Egg White/chemistry , Plant Gums/chemistry , Food Handling/methods
3.
Anal Methods ; 16(3): 449-457, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38165727

ABSTRACT

Despite numerous advancements in gluten detection, a substantial need remains for innovative, cost-effective, in situ methods that can be employed without complex analytical instruments. Addressing this demand, this study introduces a pioneering label-free colorimetric biosensor for the in situ detection of gliadin, a major component of gluten, which is a prevalent trigger of food allergies. Our novel approach employs the strategic coating of gold nanoparticles (AuNP) with gliadin-specific aptamers. In the absence of gliadin, these aptamers stably disperse AuNP, preventing their aggregation. However, upon the introduction of gliadin and in the presence of sodium chloride, AuNP aggregate, yielding a measurable colorimetric signal that facilitates the precise quantification of gliadin. Under rigorously optimized conditions, this AuNP/aptamer-based colorimetric biosensor demonstrated exceptional sensitivity and selectivity, with a detection limit of 32.1 ng mL-1 and a linear response range of 0-300 ng mL-1. Critically, the sensor maintained reliable performance when applied to real-world food samples, including gluten-free bread, cookies, and pasta. Due to its simplicity, selectivity, speed, and cost-effectiveness, this assay represents a significant advancement over current gluten detection methods. Moreover, the developed AuNP/aptamer-based colorimetric biosensor design holds promising potential for adaptation to detect other food allergens or protein toxins through selective aptamer modifications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Gliadin , Gold , Bread , Colorimetry , Biosensing Techniques/methods , Glutens
4.
Food Sci Biotechnol ; 32(5): 671-678, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009047

ABSTRACT

In this study, a dietary fiber extracted from sweet potato stems (Ipomoea batatas, PS) was evaluated for its ability to improve the quality of vegetable patty analogues. A patty analogues containing 0-50 wt% dietary fiber were prepared to analyze the utilized dietary fiber's performance. To evaluate the manufactured patty analogues, texture profile analysis, color analysis, emulsion stability, and microstructural analysis were conducted. As the PS increased, the hardness decreased, while the total expressible fluids tended to increase. The color analysis revealed that the a* value, which represents red, declined as the PS content increased, and heterogeneous colors showed at least 40 wt% of PS. According to the microstructural analysis, PS is a structure in which massive fiber bundles are integrated between textured vegetable protein networks, which is believed to have given the patty analogue soft characteristics. The findings of this study can serve as a foundation for future research into the application of carbohydrates to plant-based meat analogues. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01211-y.

5.
Food Sci Biotechnol ; 32(8): 1029-1037, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36747969

ABSTRACT

This study aimed to determine what conditions were needed to reduce the production of acrylamide when balloon flower roots [Platycodon grandiflorum (Jacq. A. DC.)] were heated. The conditions of temperature, time, and the type of equipment (i.e., consumer appliance or industrial equipment) were the important variables in the experiment. The official criterion for a recommended standard of acrylamide in tea product is less than 1000 µg/kg as determined by the Ministry of Food and Drug Safety in South Korea. A response surface methodology was used to determine whether the heated samples met the safety requirements. The most significant condition for consumer appliances was time and for industrial equipment was temperature. The optimal roasting time was 3.01 min with a consumer appliance and 4.18 min with industrial equipment at 110 â„ƒ, a typical temperature in the field. The acrylamide content of the tested sample was significantly in agreement with the predicted amount (R2 > 0.950). Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01242-z.

SELECTION OF CITATIONS
SEARCH DETAIL
...