Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 20(1): 50, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353852

ABSTRACT

BACKGROUND: The functions and protein expressions of the blood-brain barrier are changed throughout brain development following birth. This study aimed to develop a method to isolate brain capillaries from a single frozen neonatal mouse brain and elucidate the enrichment of brain capillaries by quantitative proteomic analysis. We further compared the expression profile of proteins between neonatal and adult brain capillary fractions. METHODS: The brain capillary fraction was prepared by the optimized method from a single frozen mouse neonatal brain on postnatal day 7. The brain capillary fractions and brain lysates were digested by trypsin and analyzed by liquid chromatography-mass spectrometry for quantitative proteomics. RESULTS: By optimizing the isolation method, we observed brain capillaries in the fraction prepared from a single neonatal mouse brain (nBC fraction). A protein amount of 31.5 µg, which is enough for proteomic analysis, was recovered from the nBC fraction. By proteomics analysis, the brain capillary selective proteins, including Abcb1a/Mdr1, Slc2a1/Glut1, Claudin-5, and Pecam-1, were found to be concentrated > 13.4-fold more in nBC fractions than in whole brain lysates. The marker proteins for neurons and astrocytes were not concentrated in nBC fractions, while those of pericytes and microglia were concentrated. Compared to adult mouse brain capillary fractions (aBC fractions), the expressions of Abcb1a/Mdr1a, Abcc4/Mrp4, and Slc2a1/Glut1 were significantly lower in nBC fractions than in aBC fractions, whereas those of Slc1a4/Asct1, Slc1a5/Asct2, Slc7a1/Cat1, and Slc16a1/Mct1 were significantly higher. Amino acid transporters, Slc38a5/Snat5, showed the greatest nBC-to-aBC ratio among transporters (9.83-fold). Network analysis of proteins expressed differentially between nBC and aBC fractions revealed that the proteins with terms related to the extracellular matrix were enriched. CONCLUSIONS: We succeeded in isolating brain capillaries from a single frozen brain of a neonatal mouse at postnatal day 7. Proteomic analysis revealed the differential expression in brain capillaries between neonatal and adult mice. Specifically, amino acid transporters, including Slc1a5/Asct2 and Slc38a5/Snat5, were found to be induced in neonatal brain capillaries. The present isolation method will promote the study of the function and expression of the neonatal blood-brain barrier.


Subject(s)
Capillaries , Proteomics , Mice , Animals , Animals, Newborn , Glucose Transporter Type 1/metabolism , Capillaries/metabolism , Proteomics/methods , Brain/metabolism , Blood-Brain Barrier/metabolism
2.
J Colloid Interface Sci ; 422: 58-64, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24655829

ABSTRACT

We demonstrate a patterning technique of rare-earth-ion-doped (RE) nanoparticle films directly on wettability-patterned surfaces fabricated on plastic sheets in one step. Self-assembled monolayers consisting of silane-coupling agent with hydrophobic groups were fabricated on plastic sheets. UV-ozone treatments were performed through a metal mask to selectively remove the self-assembled monolayers in a patterned manner, resulting in the formation of wettability-patterned surfaces on plastic sheets. Using a water dispersion of Er(3+) and Yb(3+)-codoped Y2O3 nanoparticles at a diameter of 100 nm, RE-nanoparticle films were fabricated on the wettability-patterned surfaces by a dip-coating technique. By adjusting the concentration of RE-nanoparticle dispersion, withdrawal speed, and withdrawal angle, amount of RE-nanoparticles, we were able to control the structures of the RE-nanoparticle films. Fluorescence microscope observations demonstrate that visible upconversion luminescence and near-infrared fluorescence were emitted from the RE-nanoparticle films on the wettability-patterned surfaces. This technique allows for the fabrication of flexible emitting devices with long-operating life time with minimized material consumption and few fabrication steps, and for the application to sensors, emitting devices, and displays in electronics, photonics, and bionics in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...