Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Graph Model ; 129: 108757, 2024 06.
Article in English | MEDLINE | ID: mdl-38503002

ABSTRACT

The determination of the critical micelle concentration (CMC) is a crucial factor when evaluating surfactants, making it an essential tool in studying the properties of surfactants in various industrial fields. In this present research, we assembled a comprehensive set of 593 different classes of surfactants including, anionic, cationic, nonionic, zwitterionic, and Gemini surfactants to establish a link between their molecular structure and the negative logarithmic value of critical micelle concentration (pCMC) utilizing quantitative structure-property relationship (QSPR) methodologies. Statistical analysis revealed that a set of 14 significant Mordred descriptors (SlogP, GATS6d, nAcid, GATS8dv, GATS4dv, PEOE_VSA11, GATS8d, ATS0p, GATS1d, MATS5p, GATS3d, NdssC, GATS6dv and EState_VSA4), along with temperature, served as appropriate inputs. Different machine learning methods, such as multiple linear regression (MLR), random forest regression (RFR), artificial neural network (ANN), and support vector regression (SVM), were employed in this study to build QSPR models. According to the statistical coefficients of QSPR models, SVR with Dragonfly hyperparameter optimization (SVR-DA) was the most accurate in predicting pCMC values, achieving (R2 = 0.9740, Q2 = 0.9739, r‾m2 = 0.9627, and Δrm2 = 0.0244) for the entire dataset.


Subject(s)
Micelles , Odonata , Animals , Surface-Active Agents/chemistry , Algorithms , Quantitative Structure-Activity Relationship , Machine Learning
2.
J Biomol Struct Dyn ; 42(6): 3286-3293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37232424

ABSTRACT

Trigonella foenum-graecum (TF-graecum), known as Hulba or Fenugreek, is one of the oldest known medicinal plants. It has been found to have antimicrobial, antifungal, antioxidant, wound-healing, anti-diarrheal, hypoglycemic, anti-diabetic, and anti-inflammatory activities. In our current report, we have collected and screened the active compounds of TF-graecum and their potential targets via different pharmacology platforms. Network construction shows that eight active compounds may act on 223 potential bladder cancer targets. The pathway enrichment analysis for the seven potential targets of the eight compounds selected, based on KEGG pathway analysis, was conducted to clarify the potential pharmacological effects. Finally, molecular docking and molecular dynamics simulation showed the stability of protein-ligand interactions. This study highlights the need for increased research into the potential medical benefits of this plant.Communicated by Ramaswamy H. Sarma.


Subject(s)
Trigonella , Urinary Bladder Neoplasms , Humans , Molecular Docking Simulation , Network Pharmacology , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacology
3.
J Biomol Struct Dyn ; 41(14): 6991-7000, 2023.
Article in English | MEDLINE | ID: mdl-35983623

ABSTRACT

Given the results of the Pfizer-developed inhibitor PF-07321332 in the treatment of the SARS-Covid-19 epidemic, we aimed to identify potential alternatives to this compound by utilizing various methods; we developed 2 D-QSAR models to predict the therapeutic activity of 78 analogues of PF-07321332, three statistical learning techniques including (MLP-ANN), (SVR), and (MLR) were exploited. Various validation approaches were applied to the three models developed following the use of five most relevant descriptors. The study of the characteristics of these descriptors proved that the inhibitory activity of PF-07321332 analogues is specifically affected by the structure of the molecule, its polarizability, and by the hydrogen bonds. The best model, named MLP-ANN (with a 5-3-1 architecture), was selected on the basis of the following statistical parameters: r2 = 0.922, Q2 = 0.921. In addition, we performed a molecular docking and a molecular dynamics analysis of these compounds. The obtained results confirm that compound 8 can be a good alternative for compound PF-07321332.Communicated by Ramaswamy H. Sarma.

4.
Mol Inform ; 41(10): e2200026, 2022 10.
Article in English | MEDLINE | ID: mdl-35373477

ABSTRACT

Quantitative structure-property relationship (QSPR) modeling was investigated to predict drug and drug-like compounds solubility in supercritical carbon dioxide. A dataset of 148 drug\drug-like compounds, accounting for 3971 experimental data points (EDPs), was collected and used for modelling the relationship between selected molecular descriptors and solubility fraction data achieved by a nonlinear approach (Artificial neural network, ANN) based on molecular descriptors. Experimental solubility data for a given drug were published as a function of temperature and pressure. In the present study, 11 significant PaDEL descriptors (AATS3v, MATS2e, GATS4c, GATS3v, GATS4e, GATS3 s, nBondsM, AVP-0, SHBd, MLogP, and MLFER_S), the temperature and the pressure were statistically proved to be sufficient inputs. The architecture of the optimized model was found to be {13,10,1}. Several statistical metrics, including average absolute relative deviation (AARD=3.7748 %), root mean square error (RMSE=0.5162), coefficient of correlation (r=0.9761), coefficient of determination (R2 =0.9528), and robustise (Q2 =0.9528) were used to validate the obtained model. The model was also subjected to an external test by using 143 EDPs. Sensitivity analysis and domain of application were examined. The overall results confirmed that the optimized ANN-QSPR model is suitable for the correlation and prediction of this property.


Subject(s)
Carbon Dioxide , Quantitative Structure-Activity Relationship , Neural Networks, Computer , Solubility , Temperature
5.
Environ Monit Assess ; 192(5): 287, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32296943

ABSTRACT

The purpose of this study was to elucidate the capacity of a Pseudomonas aeruginosa strain to metabolize hydrocarbons sludge in the production of biosurfactants to fight against environmental threats. The performance of the treatment consisted in monitoring the inductive metabolism of the strain during 48 h at a temperature of 37 °C which constitutes an opportunity of treatment of various hydrocarbons contained in crude oil and spilled in the ecosystem to prevent pollution and damage. The results showed that a treatment rate of 96,8% and an emulsification index of 71.8% were obtained corresponding to a phosphate buffer concentration of 30 mmol/L. The main role of the biosurfactants produced was to emulsify the medium and to absorb the oils contained in the hydrocarbons sludge. This allowed to stabilize hydrocarbon oils and favored the inductive metabolism of P. aeruginosa. Furthermore, physicochemical and Fourier transform infrared spectroscopy (FTIR) analysis showed that the produced biosurfactants were of rhamnolipid type. They showed promising surfactant properties, such as a strong reduction in the surface tension of water from 72 to 40.52 mN/m, a high reactivity in the culture medium at pH 7, a high osmotolerance up to 150 g/L of salt, and a critical micellar concentration of 21 mg/L.


Subject(s)
Pseudomonas aeruginosa , Sewage , Surface-Active Agents , Ecosystem , Hydrocarbons
6.
Environ Sci Pollut Res Int ; 25(1): 896-907, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29067614

ABSTRACT

Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees (Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD50) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters (Q 2 and [Formula: see text] are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD50 of 20 other pesticides. A good correlation between predicted and experimental values was found (R 2 = 0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.


Subject(s)
Bees/drug effects , Ecotoxicology/methods , Models, Biological , Pesticides/toxicity , Quantitative Structure-Activity Relationship , Risk Assessment/methods , Animals , Lethal Dose 50 , Pesticides/classification , Reproducibility of Results
7.
J Hazard Mater ; 303: 28-40, 2016 Feb 13.
Article in English | MEDLINE | ID: mdl-26513561

ABSTRACT

Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.


Subject(s)
Pesticides/toxicity , Toxicity Tests/standards , Algorithms , Animals , Lethal Dose 50 , Neural Networks, Computer , Predictive Value of Tests , Quantitative Structure-Activity Relationship , Rats , Reproducibility of Results , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL