Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Metab ; 39(5): 725-736, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33822263

ABSTRACT

INTRODUCTION: While bone literature abounds with correlations of mechanical stiffness to mineralization, such correlations are reported without relating the findings to specific intracortical locations. This study reports on mapping of stiffness and mineralization distributions in ring-shaped cortical bone samples sliced from mid-diaphyseal bovine femur. Stiffness and mineralization measurements were conducted at points across the intracortical thickness along radial lines emanating from the inner (endosteal) surface to the outer (periosteal) surface. Measurements were taken along approximately 4 mm distance of cortical bone thickness. MATERIALS AND METHODS: Three experimental techniques were employed: Vickers microhardness (HV), energy-dispersive X-ray (EDX) spectroscopy, and computed tomography (CT). Stiffness values were extracted from the Vickers microhardness tests. Elemental mineralization values (calcium %wt. and phosphorus %wt.) were determined from EDX data. All measurements were repeated on three different femur bones taken from different bovines (collected fresh from butcher). RESULTS: The study plots stiffness values and elemental mineralization (calcium %wt. and phosphorus %wt.) versus cortical thickness. Both stiffness and Ca %wt. and P %wt. are found to track and to linearly increase when plotted along the radial distance. The stiffness and mineralization trends collected from Vickers and EDX measurements were verified by employing the CT number (Hounsfield units, HU) via CT scans of the same bone samples. Data fitting via statistical methods revealed that all correlations were statistically significant. CONCLUSION: Starting from endosteal to periosteal surfaces of mid-diaphyseal bovine femur, it was found that stiffness, mineralization, and HU values all exhibit increasing and correlating trends.


Subject(s)
Cortical Bone , Diaphyses , Animals , Bone Density , Bone and Bones , Cattle , Cortical Bone/diagnostic imaging , Diaphyses/diagnostic imaging , Femur/diagnostic imaging , Tomography, X-Ray Computed
2.
Med Biol Eng Comput ; 57(3): 577-588, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30267253

ABSTRACT

Employing computer vision (CV) and optimized pulse-coupled neural networks (PCNN), this work automatically quantifies the geometrical attributes of intracortical bone porosity (namely lacunae and canaliculi (L-C), Haversian canals, and resorption cavities). Fifty pathological slides of cortical bone (× 20 magnification) were prepared from middiaphysis of bovine forelegs collected fresh from butcher. Biopsies were subdivided into sectors encircling arcs (θ of 10°) and radial distances (R) originating from the bone's geometric center toward posterior regions and spanning 3.3 mm. Microscopically, each pore is classified according to whether it belonged to primary or secondary osteon. Globally, each pore is assigned as being located in anterior or posterior regions. For each pore, area and major/minor axes lengths were determined as raw measures from which derived geometric measures, namely, area fraction (AF) and aspect ratio (AR), were derived. Said measures were plotted versus R (for different angles). Plots of AF and AR trends were found to vary linearly along the radial distance. Area fractions (%) significantly decreased linearly with R (p < 0.01) in the anterior region. In the posterior region, area fraction values are flat versus R. These findings are indicative of maturing osteons at the outer cortex with predominately near circular-shaped pores. Graphical abstract (Left) Grids of slides (magnified at 20X) of intra-cortical bone showing Lacunar-canalicular porosity (LCP). Areas marked with the dotted square represent a group of 25 images. The dashed line is a hand-drawn line that demarcates the anterior and posterior regions and the solid line is the best-fit arc radii (R =16.4 mm) of the dashed demarcation line. (Right) Images rotated in the polar coordinate system with their respective angles and radii shown.


Subject(s)
Cortical Bone/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Animals , Artificial Intelligence , Bone Resorption , Cattle , Female , Femur/diagnostic imaging , Haversian System/diagnostic imaging , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...