Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5499, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448579

ABSTRACT

In the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles. This hybrid configuration may enhance the simultaneous saccharification and fermentation process by substrate channeling. Glucose produced by hydrolysis of the cellulose shells coating the micro-particles, catalyzed by cellulytic enzymes attached to their coating, is directly fermented to ethanol by the yeasts to which the particles are connected. The results indicate ethanol yield of 62%, based on the cellulose content of the emulsion, achieved by the yeast/micro-particle hybrids. The functionality of this hybrid configuration is expected to serve as a micro-reactor for a cascade of biochemical reactions in a "one-pot" consolidated process transforming cellulose to valuable chemicals, such as biodiesel.


Subject(s)
Saccharomyces cerevisiae , Yeast, Dried , Emulsions , Cellulose , Ethanol
2.
Langmuir ; 38(37): 11171-11179, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36069748

ABSTRACT

Cellulose is a renewable biopolymer, abundant on Earth, with a multi-level supramolecular structure. There has been significant interest and advancement in utilizing natural cellulose to stabilize emulsions. In our research, we develop and examine oil in water emulsions surrounded by unmodified cellulose as microreactors for the process of transformation of cellulose into valuable chemicals such as biodiesel. This study presents morphological characterization of cellulose-coated emulsions that can be used for such purposes. Cryogenic-scanning electron microscopy imaging along with light microscopy and light scattering reveals a multi-layer inner structure: an oil core surrounded by a porous cellulose hydrogel shell, coated by an outer shell of regenerated cellulose. Measurements of small-angle X-ray scattering provide quantification of the nano-scale structure within the porous cellulose hydrogel inner shell of the emulsion particle. These characteristics are relevant to utilization of cellulose-coated emulsions in various applications such as controlled release and as hosts for enzymatic biotechnological reactions.


Subject(s)
Biofuels , Cellulose , Cellulose/chemistry , Delayed-Action Preparations , Emulsions/chemistry , Hydrogels , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...