Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792269

ABSTRACT

Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Quercetin , Humans , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Acetylation/drug effects , Apoptosis/drug effects , Methylation , Female , Cell Proliferation/drug effects , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism , Caspase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL