Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37509548

ABSTRACT

Patients with end-stage liver disease exhibit progressive skeletal muscle atrophy, highlighting a negative crosstalk between the injured liver and muscle. Our study was to determine whether TGFß ligands function as the mediators. Acute or chronic liver injury was induced by a single or repeated administration of carbon tetrachloride. Skeletal muscle injury and repair was induced by intramuscular injection of cardiotoxin. Activin type IIB receptor (ActRIIB) ligands and growth differentiation factor 8 (Gdf8) were neutralized with ActRIIB-Fc fusion protein and a Gdf8-specific antibody, respectively. We found that acute hepatic injury induced rapid and adverse responses in muscle, which was blunted by neutralizing ActRIIB ligands. Chronic liver injury caused muscle atrophy and repair defects, which were prevented or reversed by inactivating ActRIIB ligands. Furthermore, we found that pericentral hepatocytes produce excessive Gdf8 in injured mouse liver and cirrhotic human liver. Specific inactivation of Gdf8 prevented liver injury-induced muscle atrophy, similar to neutralization of ActRIIB ligands. Inhibition of Gdf8 also reversed muscle atrophy in a treatment paradigm following chronic liver injury. Direct injection of exogenous Gdf8 protein into muscle along with acute focal muscle injury recapitulated similar dysregulated muscle regeneration as that observed with liver injury. The results indicate that injured liver negatively communicate with the muscle largely via Gdf8. Unexpectedly, inactivation of Gdf8 simultaneously ameliorated liver fibrosis in mice following chronic liver injury. In vitro, Gdf8 induced human hepatic stellate (LX-2) cells to form a septa-like structure and stimulated expression of profibrotic factors. Our findings identified Gdf8 as a novel hepatomyokine contributing to injured liver-muscle negative crosstalk along with liver injury progression.

2.
Biochem Pharmacol ; 214: 115668, 2023 08.
Article in English | MEDLINE | ID: mdl-37364623

ABSTRACT

Activins are a subgroup of the TGFß superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Follistatin , Activins/physiology , Activin Receptors , Mammals
3.
Hepatol Commun ; 6(10): 2812-2826, 2022 10.
Article in English | MEDLINE | ID: mdl-35866567

ABSTRACT

The role of activin B, a transforming growth factor ß (TGFß) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


Subject(s)
Carbon Tetrachloride , Ribose , Activins , Adenosine Diphosphate/adverse effects , Animals , Carbon Tetrachloride/toxicity , Humans , Liver Cirrhosis/chemically induced , Mice , Nitric Oxide Synthase Type II/metabolism , Ribose/adverse effects , Transforming Growth Factor beta/adverse effects
4.
J Pharmacol Exp Ther ; 382(3): 287-298, 2022 09.
Article in English | MEDLINE | ID: mdl-35688476

ABSTRACT

Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce the adrenocorticotropin hormone and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease. A pegylated UCN1 peptide (PEG-hUCN1) was generated to extend half-life and was tested in multiple experimental autoimmune disease models and in healthy mice to determine effects on corticosterone induction, autoimmune disease, and glucocorticoid induced adverse effects. Cardiovascular effects were also assessed by telemetry. PEG-hUCN1 demonstrated a dose dependent 4-6-fold elevation of serum corticosterone and significantly improved autoimmune disease comparable to prednisolone in several experimental models. In healthy mice, PEG-hUCN1 showed less adverse effects compared with corticosterone treatment. PEG-hUCN1 peptide induced an initial 30% reduction in blood pressure that was followed by a gradual and sustained 30% increase in blood pressure at the highest dose. Additionally, an adeno-associated viral 8 (AAV8) UCN1 was used to assess adverse effects of chronic elevation of UCN1 in wild type and CRHR2 knockout mice. Chronic UCN1 expression by an AAV8 approach in wild type and CRHR2 knockout mice demonstrated an important role of CRHR2 in countering the adverse metabolic effects of elevated corticosterone from UCN1. Our findings demonstrate that PEG-hUCN1 shows profound effects in treating autoimmune disease with an improved safety profile relative to corticosterone and that CRHR2 activity is important in metabolic regulation. SIGNIFICANCE STATEMENT: This study reports the generation and characterization of a pegylated UCN1 peptide and the role of CRHR2 in UCN1-induced metabolic effects. The potency/selectivity, pharmacokinetic properties, pharmacodynamic effects, and efficacy in four autoimmune models and safety profiles are presented. This pegylated UCN1 shows potential for treating autoimmune diseases with reduced adverse effects compared to corticosterone treatment. Continuous exposure to UCN1 through an AAV8 approach demonstrates some glucocorticoid mediated adverse metabolic effects that are exacerbated in the absence of the CRHR2 receptor.


Subject(s)
Autoimmune Diseases , Urocortins , Animals , Autoimmune Diseases/drug therapy , Corticosterone , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Glucocorticoids , Mice , Mice, Knockout , Models, Theoretical , Polyethylene Glycols/pharmacology , Receptors, Corticotropin-Releasing Hormone/metabolism , Urocortins/metabolism , Urocortins/pharmacology
5.
Nat Med ; 23(10): 1215-1219, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846098

ABSTRACT

Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-ß (TGF-ß) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes. However, the signaling and mechanism of action of GDF15 are poorly understood owing to the absence of a clearly identified cognate receptor. Here we report that GDNF-family receptor α-like (GFRAL), an orphan member of the GFR-α family, is a high-affinity receptor for GDF15. GFRAL binds to GDF15 in vitro and is required for the metabolic actions of GDF15 with respect to body weight and food intake in vivo in mice. Gfral-/- mice were refractory to the effects of recombinant human GDF15 on body-weight, food-intake and glucose parameters. Blocking the interaction between GDF15 and GFRAL with a monoclonal antibody prevented the metabolic effects of GDF15 in rats. Gfral mRNA is highly expressed in the area postrema of mouse, rat and monkey, in accordance with previous reports implicating this region of the brain in the metabolic actions of GDF15 (refs. 4,5,6). Together, our data demonstrate that GFRAL is a receptor for GDF15 that mediates the metabolic effects of GDF15.


Subject(s)
Area Postrema/metabolism , Eating/drug effects , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/pharmacology , Obesity/metabolism , Weight Loss/drug effects , Animals , Brain/metabolism , Eating/genetics , Flow Cytometry , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , HEK293 Cells , Humans , Immunoblotting , Macaca fascicularis , Male , Mice , Mice, Knockout , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Surface Plasmon Resonance , Weight Loss/genetics
6.
PLoS One ; 12(4): e0175465, 2017.
Article in English | MEDLINE | ID: mdl-28406943

ABSTRACT

There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.


Subject(s)
Bone Density/physiology , Citric Acid/metabolism , Dental Enamel/metabolism , Dicarboxylic Acid Transporters/metabolism , Osteogenesis/physiology , Symporters/metabolism , Animals , Dicarboxylic Acid Transporters/deficiency , Mice , Mice, Knockout , Symporters/deficiency
7.
Bone ; 97: 20-28, 2017 04.
Article in English | MEDLINE | ID: mdl-27939957

ABSTRACT

Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.


Subject(s)
Antibodies/pharmacology , Bone Morphogenetic Proteins/immunology , Bone and Bones/pathology , Bone and Bones/physiopathology , Genetic Markers/immunology , Osteogenesis/drug effects , Ovariectomy , Animals , Biomarkers/blood , Biomechanical Phenomena , Bone Resorption/blood , Bone Resorption/pathology , Bone and Bones/drug effects , Cancellous Bone/drug effects , Cancellous Bone/pathology , Densitometry , Female , Femur/drug effects , Femur/pathology , Femur/physiopathology , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/pathology , Lumbar Vertebrae/physiopathology , Organ Size/drug effects , Rats, Sprague-Dawley , Time Factors , Wnt Proteins/genetics , Wnt Proteins/metabolism
8.
Cytokine ; 79: 66-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26771472

ABSTRACT

Interleukin (IL)-33 is a member of the IL-1 family. IL-33 effects are mediated through its receptor, ST2 and IL-1RAcP, and its signaling induces the production of a number of pro-inflammatory mediators, including TNFα, IL-1ß, IL-6, and IFN-γ. There are conflicting reports on the role of IL-33 in bone homeostasis, with some demonstrating a bone protective role for IL-33 whilst others show that IL-33 induces inflammatory arthritis with concurrent bone destruction. To better clarify the role IL-33 plays in bone biology in vivo, we studied IL-33 KO mice as well as mice in which the cytokine form of IL-33 was overexpressed. Mid-femur cortical bone mineral density (BMD) and bone strength were similar in the IL-33 KO mice compared to WT animals during the first 8months of life. However, in the absence of IL-33, we observed higher BMD in lumbar vertebrae and distal femur in female mice. In contrast, overexpression of IL-33 resulted in a marked and rapid reduction of bone volume, mineral density and strength. Moreover, this was associated with a robust increase in inflammatory cytokines (including IL-6 and IFN-γ), suggesting the bone pathology could be a direct effect of IL-33 or an indirect effect due to the induction of other mediators. Furthermore, the detrimental bone effects were accompanied by increases in osteoclast number and the bone resorption marker of C-terminal telopeptide collagen-I (CTX-I). Together, these results demonstrate that absence of IL-33 has no negative consequences in normal bone homeostasis while high levels of circulating IL-33 contributes to pathological bone loss.


Subject(s)
Bone Density/physiology , Bone Resorption/metabolism , Femur/physiology , Interleukin-33/genetics , Interleukin-33/metabolism , Lumbar Vertebrae/physiology , Animals , Bone Density/genetics , Collagen Type I/metabolism , Cytokines/metabolism , Female , Interleukin-33/biosynthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/cytology , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...