Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781213

ABSTRACT

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Subject(s)
Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-22 , Interleukin-33 , Interleukins , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukins/metabolism , Interleukins/immunology , Interleukins/genetics , Mice , Streptococcus pneumoniae/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Humans , Mice, Knockout , Microbiota/immunology , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Gastrointestinal Microbiome/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Polymorphism, Single Nucleotide
2.
Immunohorizons ; 5(12): 972-982, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921059

ABSTRACT

LPS binding protein (LBP) is an important innate sensor of microbial cell wall structures. Frequent functionally relevant mutations exist and have been linked to influence susceptibility to and course of bacterial infections. We examined functional properties of a single nucleotide polymorphism resulting in an exchange of phenylalanine to leucine at position 436 of LBP (rs2232618) and compared the frequent variant of the molecule with the rare one in ligand binding experiments. We then stimulated RAW cells with bacterial ligands in the presence of serum obtained from individuals with different LBP genotypes. We, furthermore, determined the potential effects of structural changes in the molecule by in silico modeling. Finally, we analyzed 363 surgical patients for this genetic variant and examined incidence and course of sepsis following surgery. We found that binding of LBP to bacterial ligands was reduced, and stimulation of RAW cells resulted in an increased release of TNF when adding serum from individuals carrying the F436L variant as compared with normal LBP. In silico analysis revealed structural changes of LBP, potentially explaining some of the effects observed for the LBP variant. Finally, patients carrying the F436L variant were found to be similarly susceptible for sepsis. However, we observed a more favorable course of severe infections in this cohort. Our findings reveal new insights into LPS recognition and the subsequent activation of the innate immune system brought about by LBP. The identification of a genetic variant of LBP influencing the course of sepsis may help to stratify individuals at risk and thus reduce clinical complications of patients.


Subject(s)
Acute-Phase Proteins/genetics , Acute-Phase Proteins/physiology , Carrier Proteins/genetics , Carrier Proteins/physiology , Genetic Variation/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/physiology , Sepsis/genetics , Sepsis/immunology , Animals , Cell Line , Computer Simulation , Genotype , Humans , Mice , Polymorphism, Single Nucleotide
3.
Immun Ageing ; 17: 7, 2020.
Article in English | MEDLINE | ID: mdl-32190093

ABSTRACT

Obesity is a risk factor for several aging-related diseases such as type 2 diabetes, cardiovascular disease, and cancer. Especially, cardiovascular disease is triggered by obesity by inducing vascular senescence and chronic low-grade systemic inflammation, also known as inflamm-aging. Released molecules from damaged cells and their recognition by the innate immune system is one of the mechanisms driving inflamm-aging. Obesity results in mitochondrial damage, leading to endothelial inflammation triggered by cytosolic mtDNA via the cGAS/STING pathway. Recently, we have shown STING SNP R293Q to be associated with a decreased risk for aging-related diseases in current smokers. Since current smoking triggers DNA damage that, similar to obesity, may result in the release of DNA into the cytoplasm, we hypothesized that the cGAS/STING pathway can modify the phenotype of aging also in obese subjects. Therefore, the objective of our study was to investigate whether STING R293Q is associated with aging-related diseases in obese individuals. We indeed show that STING 293Q is associated with protection from combined aging-related diseases (P = 0.014) and, in particular, cardiovascular disease in these subjects (P = 0.010). Therefore, we provide the first evidence that stratification for obesity may reveal new genetic loci determining the risk for aging-related diseases.

4.
Malar J ; 18(1): 7, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30642347

ABSTRACT

BACKGROUND: Plasmodium falciparum infection during pregnancy is a major cause of poor maternal health, adverse foetal outcome and infant mortality in sub-Saharan Africa. Genetic disposition is involved in susceptibility to malaria in pregnancy and its manifestation. MicroRNAs (miRNAs) influence gene regulation including that of innate immune responses. A miRNA-146a rs2910164 G > C single nucleotide polymorphism (SNP) has been associated with increased risks of several diseases, but no data as to malaria are available. METHODS: The association between miRNA-146a rs2910164 and P. falciparum infection among 509 Ghanaian women attending antenatal care (ANC) and 296 delivering Ghanaian primiparae was investigated. Malaria parasites were diagnosed by microscopy and PCR. Leukocyte-associated hemozoin in placental samples was recorded as well. Proportions were compared between groups by Fisher's exact test, and logistic regression models were used to adjust for possible confounders. RESULTS: By PCR, P. falciparum infection was detected in 63% and 67% of ANC attendees and delivering primiparae, respectively. In both groups, two in three women were either heterozygous or homozygous for miRNA-146a rs2910164. Among ANC attendees, homozygosity conferred increased odds of infection (adjusted odds ratio (aOR), 2.3; 95% CI, 1.3-4.0), which was pronounced among primigravidae (aOR, 5.8; 95% CI, 1.6-26) but only marginal in multigravidae. Likewise, homozygosity for miRNA-146a rs2910164 in primiparae increased the odds of past or present placental P. falciparum infection almost six-fold (aOR, 5.9; 95% CI, 2.1-18). CONCLUSIONS: These results indicate that SNP rs2910164 G > C is associated with increased odds for P. falciparum infection in first-time pregnant women who are considered to lack sufficient acquired immune responses against pregnancy-specific strains of P. falciparum. These findings suggest that miRNA-146a is involved in protective malarial immunity, and specifically in the innate component.


Subject(s)
Genetic Predisposition to Disease , Malaria, Falciparum/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Pregnancy Complications, Parasitic/genetics , Adaptive Immunity , Adult , Female , Ghana/epidemiology , Heterozygote , Humans , Immunity, Innate , Logistic Models , Odds Ratio , Plasmodium falciparum , Polymerase Chain Reaction , Pregnancy , Prenatal Care , Young Adult
5.
Gerontology ; 65(2): 145-154, 2019.
Article in English | MEDLINE | ID: mdl-30368497

ABSTRACT

BACKGROUND: Aging is a multifactorial process driven by several conditions. Among them, inflamm-aging is characterized by chronic low-grade inflammation driving aging-related diseases. The aged immune system is characterized by the senescence-associated secretory phenotype, resulting in the release of proinflammatory cytokines contributing to inflamm-aging. Another possible mechanism resulting in inflamm-aging could be the increased release of danger- associated molecular patterns (DAMPs) by increased cell death in the elderly, leading to a chronic low-grade inflammatory response. Several pattern recognition receptors of the innate immune system are involved in recognition of DAMPs. The DNA-sensing cGAS-STING pathway plays a pivotal role in combating viral and bacterial infections and recognizes DNA released by cell death during the process of aging, which in turn may result in increased inflamm-aging. OBJECTIVE: The aim of this study was to investigate whether a variation within the STING gene with known impaired function may be associated with protection from aging-related diseases by decreasing the process of inflamm-aging. METHODS: STING (Tmem173) R293Q was genotyped in a cohort of 3,397 aged subjects (65-103 years). The distribution of the variant allele in healthy subjects and subjects suffering from aging-associated diseases was compared by logistic regression analysis. RESULTS: We show here that STING 293Q allele carriers were protected from aging-associated diseases (OR = 0.823, p = 0.038). This effect was much stronger in the subgroup of subjects suffering from chronic lung diseases (OR = 0.730, p = 0.009). CONCLUSION: Our results indicate that decreased sensitivity of the innate immune receptors is associated with healthy aging, most likely due to a decreased process of inflamm-aging.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , Inflammation/metabolism , Membrane Proteins , Aged , Aged, 80 and over , Cell Death/genetics , Cognition , Cohort Studies , Female , Geriatric Assessment/methods , Health Status Disparities , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Poland/epidemiology , Polymorphism, Single Nucleotide , Protective Factors , Risk Factors , Signal Transduction
6.
Cancer Med ; 7(10): 5057-5065, 2018 10.
Article in English | MEDLINE | ID: mdl-30191681

ABSTRACT

Genetic associations between variants on chromosome 5p13 and 8q24 and gastric cancer (GC) have been previously reported in the Asian population. We aimed to replicate these findings and to characterize the associations at the genome and transcriptome level. We performed a fine-mapping association study in 1926 GC patients and 2012 controls of European descent using high dense SNP marker sets on both chromosomal regions. Next, we performed expression quantitative trait locus (eQTL) analyses using gastric transcriptome data from 143 individuals focusing on the GC associated variants. On chromosome 5p13 the strongest association was observed at rs6872282 (P = 2.53 × 10-04 ) and on chromosome 8q24 at rs2585176 (P = 1.09 × 10-09 ). On chromosome 5p13 we found cis-eQTL effects with an upregulation of PTGER4 expression in GC risk allele carrier (P = 9.27 × 10-11 ). On chromosome 8q24 we observed cis-eQTL effects with an upregulation of PSCA expression in GC risk allele carrier (P = 2.17 × 10-47 ). In addition, we found trans-eQTL effects for the same variants on 8q24 with a downregulation of MBOAT7 expression in GC risk allele carrier (P = 3.11 × 10-09 ). In summary, we confirmed and refined the previously reported GC associations at both chromosomal regions. Our data point to shared etiological factors between Asians and Europeans. Furthermore, our data imply an upregulated expression of PTGER4 and PSCA as well as a downregulated expression of MBOAT7 in gastric tissue as risk-conferring GC pathomechanisms.


Subject(s)
Acyltransferases/genetics , Antigens, Neoplasm/genetics , Gene Expression Profiling/methods , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics , Stomach Neoplasms/genetics , Case-Control Studies , Chromosome Mapping/methods , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 8/genetics , Female , GPI-Linked Proteins/genetics , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci
7.
Front Immunol ; 9: 1780, 2018.
Article in English | MEDLINE | ID: mdl-30131804

ABSTRACT

Lower respiratory tract infections (LRTI) are often caused by Streptococcus pneumoniae (Spn) and can be recurrent in 8% of children older than 2 years of age. Spn is recognized by pattern-recognition receptors (PRRs) of the innate immune system, in particular toll-like receptors (TLRs) 2 and 4. To assess whether a defect somewhere along this TLR signaling pathway increases susceptibility to recurrent pneumococcal LRTI, we conducted a prospective case-control study with 88 healthy individuals and 45 children with recurrent LRTI aged 2-5 years old. We examined cell surface expression of TLR2 and TLR4, as well as eight genetic variants of these receptors or associated co-receptors TLR1 and TLR6. Interleukin-6 production was measured after whole blood stimulation assays with specific agonists and heat-killed Spn. Our findings reveal that single-nucleotide polymorphisms within toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) alone or in combination with TLR1 N248S, TLR1 I602S, or TLR6 S249P polymorphisms contributes to various degree of susceptibility to recurrent pneumococcal LRTI in children by modulating the inflammatory response. In that respect, carriage of the TIRAP S180L heterozygous trait increases the likelihood to protect against pneumococcal LRTI, whereas children carrying the mutant homozygous TIRAP 180L polymorphism might be more likely susceptible to recurrent pneumococcal LRTI.


Subject(s)
Genetic Predisposition to Disease , Membrane Glycoproteins/genetics , Pneumococcal Infections/etiology , Polymorphism, Single Nucleotide , Receptors, Interleukin-1/genetics , Respiratory Tract Infections/etiology , Streptococcus pneumoniae , Adult , Age Factors , Alleles , Biomarkers , Case-Control Studies , Child , Child, Preschool , Female , Gene Expression , Genetic Association Studies , Genotype , Humans , Immunophenotyping , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Odds Ratio , Receptors, Pattern Recognition/genetics , Recurrence , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
8.
Fungal Genet Biol ; 118: 45-53, 2018 09.
Article in English | MEDLINE | ID: mdl-30016701

ABSTRACT

The mating type (MAT) locus is the key regulator of sexual reproduction in fungi. In the dermatophytes and other Ascomycetes this genomic region exists in two distinct forms (idiomorphs) and their balanced presence is a precondition for successful mating in heterothallic fungi. But the MAT locus not only drives sexual reproduction, it has also been shown to influence pathogenicity, virulence, and/or morphological changes in pathogenic fungi of the genera Candida, Histoplasma, and Cryptococcus. In order to find out whether there are similar trends in dermatophytes, we investigated the MAT locus of 19 anthropophilic and zoophilic species via Sanger sequencing and primer walking. We identified for the first time the MAT locus idiomorphs of the dermatophyte species Microsporum audouinii (MAT1-2), M. ferrugineum (MAT1-2), Trichophyton schoenleinii (MAT1-2), T. bullosum (MAT1-1), T. quinckeanum (MAT1-1), T. concentricum (MAT1-1), T. eriotrephon (MAT1-1), and T. erinacei (MAT1-2). In addition, we determined the MAT locus sequence for dermatophyte species whose mating type idiomorphs had been described on the basis of results of classical confrontation experiments (e.g. M. canis, MAT1-2) and we confirmed recently published molecular data (e.g. T. rubrum, MAT1-2). Our results corroborate that MAT locus idiomorphs are unequally distributed in the majority of the analyzed species and the ability to mate with a partner of the opposite sex is limited to a few zoophilic species. Clonal spreads are identified that are connected to one of the idiomorphs and a higher virulence and/or a higher transmission rate to humans (T. benhamiae and T. mentagrophytes). For the imbalanced idiomorph distribution pattern we hypothesize that either: (I) one of the mating type idiomorphs may be extinct due to clonal reproduction (e.g., T. rubrum and M. canis), (II) mating partners of one species adapted to different hosts followed by speciation in the new niche (e.g., T. equinum and T. tonsurans) or (III) unisexual reproduction is the next evolutionary stage of propagation in dermatophytes which involves the extinction of one mating idiomorph.


Subject(s)
Arthrodermataceae/genetics , Evolution, Molecular , Genes, Mating Type, Fungal/genetics , Reproduction/genetics , Ascomycota/genetics , Humans , Phylogeny , Sequence Analysis, DNA
9.
PLoS Pathog ; 14(1): e1006829, 2018 01.
Article in English | MEDLINE | ID: mdl-29298342

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-STING pathway is central for innate immune sensing of various bacterial, viral and protozoal infections. Recent studies identified the common HAQ and R232H alleles of TMEM173/STING, but the functional consequences of these variants for primary infections are unknown. Here we demonstrate that cGAS- and STING-deficient murine macrophages as well as human cells of individuals carrying HAQ TMEM173/STING were severely impaired in producing type I IFNs and pro-inflammatory cytokines in response to Legionella pneumophila, bacterial DNA or cyclic dinucleotides (CDNs). In contrast, R232H attenuated cytokine production only following stimulation with bacterial CDN, but not in response to L. pneumophila or DNA. In a mouse model of Legionnaires' disease, cGAS- and STING-deficient animals exhibited higher bacterial loads as compared to wild-type mice. Moreover, the haplotype frequency of HAQ TMEM173/STING, but not of R232H TMEM173/STING, was increased in two independent cohorts of human Legionnaires' disease patients as compared to healthy controls. Our study reveals that the cGAS-STING cascade contributes to antibacterial defense against L. pneumophila in mice and men, and provides important insight into how the common HAQ TMEM173/STING variant affects antimicrobial immune responses and susceptibility to infection. TRIAL REGISTRATION: ClinicalTrials.gov DRKS00005274, German Clinical Trials Register.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Immunity, Innate/genetics , Legionella pneumophila/immunology , Legionnaires' Disease/drug therapy , Legionnaires' Disease/genetics , Membrane Proteins/genetics , Nucleotidyltransferases/physiology , Adult , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cells, Cultured , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Immunity, Innate/drug effects , Male , Mice , Mice, Inbred C57BL , Middle Aged , Polymorphism, Genetic , Treatment Outcome
10.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29263110

ABSTRACT

Streptococcus pneumoniae is a frequent colonizer of the upper respiratory tract and a leading cause of bacterial pneumonia. The innate immune system senses pneumococcal cell wall components, toxin, and nucleic acids, which leads to production of inflammatory mediators to initiate and control antibacterial defense. Here, we show that the cGAS (cyclic GMP-AMP [cGAMP] synthase)-STING pathway mediates detection of pneumococcal DNA in mouse macrophages to primarily stimulate type I interferon (IFN) responses. Cells of human individuals carrying HAQ TMEM173, which encodes a common hypomorphic variant of STING, were largely or partly defective in inducing type I IFNs and proinflammatory cytokines upon infection. Subsequent analyses, however, revealed that STING was dispensable for restricting S. pneumoniae during acute pneumonia in mice. Moreover, explorative analyses did not find differences in the allele frequency of HAQ TMEM173 in nonvaccinated pneumococcal pneumonia patients and healthy controls or an association of HAQ TMEM173 carriage with disease severity. Together, our results indicate that the cGAS/STING pathway senses S. pneumoniae but plays no major role in antipneumococcal immunity in mice and humans.


Subject(s)
Membrane Proteins/immunology , Nucleotidyltransferases/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Adult , Aged , Animals , Cohort Studies , Female , Humans , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/immunology , Macrophages/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nucleotidyltransferases/genetics , Pneumococcal Infections/genetics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics
13.
J Immunol ; 198(2): 776-787, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27927967

ABSTRACT

TMEM173 encodes MPYS/STING and is an innate immune sensor for cyclic dinucleotides (CDNs) playing a critical role in infection, inflammation, and cancer. The R71H-G230A-R293Q (HAQ) of TMEM173 is the second most common human TMEM173 allele. In this study, using data from the 1000 Genomes Project we found that homozygous HAQ individuals account for ∼16.1% of East Asians and ∼2.8% of Europeans whereas Africans have no homozygous HAQ individuals. Using B cells from homozygous HAQ carriers, we found, surprisingly, that HAQ/HAQ carriers express extremely low MPYS protein and have a decreased TMEM173 transcript. Consequently, the HAQ/HAQ B cells do not respond to CDNs. We subsequently generated an HAQ knock-in mouse expressing a mouse equivalent of the HAQ allele (mHAQ). The mHAQ mouse has decreased MPYS protein in B cells, T cells, Ly6Chi monocytes, bone marrow-derived dendritic cells, and lung tissue. The mHAQ mouse also does not respond to CDNs in vitro and in vivo. Lastly, Pneumovax 23, with an efficacy that depends on TMEM173, is less effective in mHAQ mice than in wild type mice. We conclude that HAQ is a null TMEM173 allele. Our findings have a significant impact on research related to MPYS-mediated human diseases and medicine.


Subject(s)
Immunity, Innate/genetics , Membrane Proteins/genetics , Alleles , Animals , Gene Knock-In Techniques , Genotype , Humans , Mice , Mice, Inbred C57BL , Nucleotides, Cyclic/immunology , Reverse Transcriptase Polymerase Chain Reaction
14.
BMC Geriatr ; 16: 144, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27439317

ABSTRACT

BACKGROUND: The cholesteryl ester transfer protein (CETP) polymorphism I405V has been suggested to be involved in longevity and susceptibility to cardiovascular diseases. An enhanced reverse cholesterol transport due to enhanced HDL levels has been hypothesized to be the underlying mechanism. However, clinical trials with HDL-enhancing drugs failed to show beneficial effects. Consequently, it has been postulated that genetic variations enhancing HDL levels are cardioprotective only if they also decrease LDL levels. METHODS: A cross-sectional study was conducted to genotype 1028 healthy blood donors and 1517 clinically well characterized elderly for CETP I405V. RESULTS: We could not find any association of this polymorphism with age for both, males or females, in any of these cohorts (P = 0.71 and P = 0.57, respectively, for males and P = 0.55 and P = 0.88, respectively, for females). In addition, no association with cardiovascular diseases could be observed in the elderly cohort (males OR = 1.12 and females OR = 0.88). In the same cohort, the CETP V405V genotype was associated with significantly enhanced HDL levels (P = 0.03), mostly owing to the female sex (P = 0.46 for males, P = 0.02 for females), whereas LDL and triglyceride levels were unchanged (P = 0.62 and P = 0.18, respectively). CONCLUSION: Our data support the recent hypothesis that variations enhancing HDL levels without affecting LDL levels are not associated with the risk for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Cholesterol Ester Transfer Proteins/genetics , Lipoproteins, HDL/metabolism , Aged , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/genetics , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Polymorphism, Genetic , White People/genetics
15.
Immun Ageing ; 13: 7, 2016.
Article in English | MEDLINE | ID: mdl-26997964

ABSTRACT

BACKGROUND: To investigate mechanisms that determine healthy aging is of major interest in the modern world marked by longer life expectancies. In addition to lifestyle and environmental factors genetic factors also play an important role in aging phenotypes. The aged immune system is characterized by a chronic micro-inflammation, known as inflamm-aging, that is suspected to trigger the onset of age-related diseases such as cardiovascular disease, Alzheimer's disease, cancer, and Diabetes Mellitus Type 2 (DMT2). We have recently shown that a Toll-like receptor 6 variant (P249S) is associated with susceptibility to cardiovascular disease and speculated that this variant may also be associated with healthy aging in general by decreasing the process of inflamm-aging. RESULTS: Analyzing the PolSenior cohort we show here that nonsmoking S allele carriers are significantly protected from age-related diseases (P = 0.008, OR: 0.654). This association depends not only on the association with cardiovascular diseases (P = 0.018, OR: 0.483) for homozygous S allele carriers, but is also driven by a protection from Diabetes Mellitus type 2 (P = 0.010, OR: 0.486) for S allele carriers. In addition we detect a trend but no significant association of this allele with inflamm-aging in terms of baseline IL-6 levels. CONCLUSION: We confirm our previous finding of the TLR-6 249S variant to be protective regarding cardiovascular diseases. Furthermore, we present first evidence of TLR-6 249S being involved in DMT2 susceptibility and may be in general associated with healthy aging possibly by reducing the process of inflamm-aging.

16.
Acta Derm Venereol ; 96(2): 169-72, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26315479

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease in which genetic and environmental factors result in impaired epidermal barrier functioning and an altered immune response. Vitamin D influences these 2 pathomechanisms, and beneficial results have been suggested in AD. The aim of this study was to investigate the potential roles of the 2 essential vitamin D metabolizing enzymes. The frequencies of 6 common polymorphisms in the genes encoding the vitamin D synthesizing enzyme Cyp27b1 or the inactivating enzyme Cyp24a1 were assessed in 281 patients with AD and 278 healthy donors in a case-control setting. The Cyp24a1 rs2248359-major C allele was significantly over-represented in patients with AD compared with controls, which was more pronounced in patients with severe AD. In addition, haplotypes of the Cyp24a1 and Cyp27b1 genes were associated with AD. These data support that vitamin D mediates beneficial functions in AD and suggest that future studies on the impact of vitamin D on AD should consider the individual genotypes of the vitamin D metabolizing enzymes.


Subject(s)
Dermatitis, Atopic/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Vitamin D3 24-Hydroxylase/genetics , Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Adult , Case-Control Studies , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/enzymology , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Middle Aged , Phenotype , Severity of Illness Index , Vitamin D3 24-Hydroxylase/metabolism
17.
Immun Ageing ; 12: 10, 2015.
Article in English | MEDLINE | ID: mdl-26265927

ABSTRACT

[This corrects the article DOI: 10.1186/s12979-015-0034-z.].

18.
Immun Ageing ; 12: 7, 2015.
Article in English | MEDLINE | ID: mdl-26157469

ABSTRACT

BACKGROUND: Determining the prerequisites for healthy aging is a major task in the modern world characterized by a longer lifespan of the individuals. Besides lifestyle and environmental influences genetic factors are involved as shown by several genome-wide association studies. Older individuals are known to have an impaired immune response, a condition recently termed "inflamm-aging". We hypothesize that the induction of this condition in the elderly is influenced by the sensitivity of the innate immune system. Therefore, we investigated genetic variants of the Toll-like receptor (TLR) family, one of the major family of innate immune receptors, for association with age in two cohorts of healthy, disease-free subjects. RESULTS: According to sex we found a positive association of loss-of-function variants of TLR-1 and -6 with healthy aging with odds ratios of 1.54 in males for TLR-6 (249 S/S), and 1.41, 1.66, and 1.64 in females for TLR-1 prom., TLR-1 (248 S/S), and TLR-1 (602 S/S), respectively. Thus, the presence of these variants increases the probability of achieving healthy old age and indicates that a reduced TLR activity may be beneficial in the elderly. CONCLUSIONS: This is the first report showing an association of TLR variants with age. While a loss of function of an important immune receptor may be a risk factor for acute infections as has been shown previously, in the setting of healthy ageing it appears to be protective, which may relate to "inflamm-aging". These first results should be reproduced in larger trials to confirm this hypothesis.

19.
Gastric Cancer ; 18(1): 77-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24557417

ABSTRACT

BACKGROUND: Inflammation, especially the cytokine response of the IL-1 family, has been shown to influence susceptibility to gastric cancer. In addition, several other pro-inflammatory cytokines have been demonstrated to influence metastasis and resistance to chemotherapy. Therefore, genetic variations within these genes may not only affect susceptibility but also influence the outcome of gastric cancer patients. A limited number of studies showed indeed an association of IL-1ß and IL-1RN variations with survival of gastric cancer patients. However, results are inconsistent, possibly because of different patient cohorts and different therapies. METHODS: In this retrospective cohort study we genotyped 154 patients with gastric cancer for IL-1ß and IL-1RN variations. Patients had undergone pathologically proven R0 resection and had received no additional adjuvant treatment. RESULTS: We show here a protective association with disease-free survival for both heterozygous genotypes, IL-1ß SNP C-511T (rs16944) and IL-1RN VNTR. The combination of both heterozygous genotypes is the strongest predictor independent of UICC stage. CONCLUSION: Genetic variations in the IL-1ß and IL-1RN genes influence disease progression in gastric cancer. Screening for these genetic variations might help to stratify therapies for gastric cancer patients in the future.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1beta/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/surgery , Aged , Cohort Studies , Disease-Free Survival , Female , Heterozygote , Humans , Male , Middle Aged , Minisatellite Repeats , Polymorphism, Single Nucleotide , Retrospective Studies , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Treatment Outcome
20.
Immunity ; 39(4): 647-60, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24120359

ABSTRACT

Lipopolysaccharide (LPS) binding protein (LBP) is an acute-phase protein that initiates an immune response after recognition of bacterial LPS. Here, we report the crystal structure of murine LBP at 2.9 Å resolution. Several structural differences were observed between LBP and the related bactericidal/permeability-increasing protein (BPI), and the LBP C-terminal domain contained a negatively charged groove and a hydrophobic "phenylalanine core." A frequent human LBP SNP (allelic frequency 0.08) affected this region, potentially generating a proteinase cleavage site. The mutant protein had a reduced binding capacity for LPS and lipopeptides. SNP carriers displayed a reduced cytokine response after in vivo LPS exposure and lower cytokine concentrations in pneumonia. In a retrospective trial, the LBP SNP was associated with increased mortality rates during sepsis and pneumonia. Thus, the structural integrity of LBP may be crucial for fighting infections efficiently, and future patient stratification might help to develop better therapeutic strategies.


Subject(s)
Acute-Phase Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Blood Proteins/chemistry , Carrier Proteins/chemistry , Immunity, Innate/genetics , Lipopolysaccharides/chemistry , Membrane Glycoproteins/chemistry , Models, Molecular , Mutation , Polymorphism, Single Nucleotide , Acute-Phase Proteins/genetics , Acute-Phase Proteins/immunology , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Binding Sites , Blood Proteins/genetics , Blood Proteins/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Crystallography, X-Ray , Genotype , Humans , Hydrophobic and Hydrophilic Interactions , Lipopolysaccharides/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Protein Binding , Protein Structure, Tertiary , Static Electricity , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...