Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Trop Med Health ; 52(1): 38, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745247

ABSTRACT

BACKGROUND: Community and individual participation are crucial for the success of schistosomiasis control. The World Health Organization (WHO) has highlighted the importance of enhanced sanitation, health education, and Mass Drug Administration (MDA) in the fight against schistosomiasis. These approaches rely on the knowledge and practices of the community to be successful; however, where the community knowledge is low and inappropriate, it hinders intervention efforts. Hence, it is essential to identify barriers and misconceptions related to awareness of schistosomiasis, sources of infection, mode of transmission, symptoms, and control measures. METHODS: This was a mixed-method cross-sectional study involving 1200 pre-school children randomly selected and examined for Schistosoma mansoni infection using the Kato-Katz technique. All parents/guardians of selected children were enrolled for a pre-tested questionnaire survey, while 42 were engaged in focus group discussions (FGDs). The level of knowledge and awareness among parents/guardians about schistosomiasis was evaluated in relation to the infection status of their pre-school children. RESULTS: Among pre-school children, the prevalence of intestinal schistosomiasis was 45.1% (95% CI 41.7-48.5). A majority of parents/guardians (85.5%) had heard about schistosomiasis, and this awareness was associated with the participant's level of education (OR = 0.16, 95% CI 0.08, 0.34). In addition, a positive association was observed between higher educational attainment and knowledge of the causative agent (OR = 0.69, 95% CI 0.49, 0.96). Low education level was significantly associated with limited knowledge of transmission through lake water contact (OR = 0.71, 95% CI 0.52, 0.97) and infection from the lake (OR = 0.33, 95% CI 0.19, 0.57). Notably, parents/guardians who have heard of schistosomiasis could not recognize symptoms of S. mansoni infection, such as abdominal pain (91.8%, 815/888) and blood in the stool (85.1%, 756/888). Surprisingly, 49.8% (442/888) incorrectly identified hematuria (blood in urine), a key sign of S. haematobium, but not S. mansoni, in an endemic area for S. mansoni infection. The majority (82.6%, 734/888) of parents/guardians were unaware that dams are potential infection sites, despite 53.9% (479/888) of their pre-school-aged children testing positive for schistosome infection. CONCLUSIONS: Despite the high level of awareness of intestinal schistosomiasis in the study area, we identified a low level of knowledge regarding its causes, modes of transmission, signs and symptoms and potential sites of transmission within the community. This study emphasizes the need for targeted educational interventions to address the misconceptions and knowledge gaps surrounding intestinal schistosomiasis through tailored community-based programs.

2.
Trop Med Health ; 52(1): 12, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233936

ABSTRACT

BACKGROUND: Healthy eating habits are essential for improving nutritional status and strengthening immunity against infectious diseases. This study examined the relationship between diet quality and stunting in school-aged children in an infectious disease-endemic area of western Kenya. METHODS: This cross-sectional study included 260 school-aged children (age 9-17 years) enrolled in primary schools in Mbita Sub-county, western Kenya. The nutritional status was assessed using anthropometric measurements. Dietary intake was measured using food frequency questionnaires and evaluated using the Food Pyramid (FP) score, which indicates adherence to the Kenyan food-based dietary guideline. Information on the children's age, sex, maternal education, and household wealth index was collected using a household-based questionnaire. Infections with the predominant parasites, such as Schistosoma (S.) mansoni, were detected via microscopy. The trend associations of the FP score with food group intake were examined to characterize the dietary intake of this population. Logistic regression analysis was performed to investigate the relationship between stunting and FP score tertiles, adjusted for sociodemographic and economic indicators and parasitic infection status. RESULTS: Among the studied schoolchildren, 15.0% exhibited stunting, while 76.2% were infected with S. mansoni. The mean FP score was 25.6 out of 50 points. A higher FP score was characterized by a high intake of roots and tubers, dairy products, pulses, and fruits and a low intake of cereals and animal-source foods. The analysis revealed a trend: a lower risk of stunting was evident in groups with elevated FP scores (p for trend = 0.065). However, these trend associations were observable among subjects with either negative or light S. mansoni infection (p for trend = 0.016). CONCLUSIONS: A higher quality diet, as evaluated by FP scores, was associated with a low risk of stunting among school-aged children. Notably, this association seemed to weaken in the presence of a high burden of S. mansoni infection. It highlights the importance of enhancing dietary quality through the promotion of diverse nutrient-dense foods alongside effective S. mansoni infection control for improved growth. This study contributes fundamental knowledge for understanding the diet-malnutrition relationship in areas endemic for S. mansoni infection.

3.
Parasitol Int ; 99: 102844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38103862

ABSTRACT

The protozoan parasite Entamoeba histolytica causes amoebiasis, a global public health problem. Amoebiasis is solely transmitted by cysts that are produced from proliferative trophozoites by encystation in the large intestine of humans. During encystation, various metabolites, pathways, and cascades sequentially orchestrate the morphological and physiological changes required to produce cysts. Cholesteryl sulfate (CS) has recently been revealed to be among the key molecules that control the morphological and physiological changes of encystation by exerting pleiotropic effects. CS promotes the rounding of encysting Entamoeba cells and maintains this spherical morphology as encysting cells are surrounded by the cyst wall, a prerequisite for resistance against environmental stresses. CS is also involved in the development of membrane impermeability, another prerequisite for resistance. The initiation of cyst wall formation is, however, CS-independent. Here, we overview CS-dependent and -independent processes during encystation and discuss their functional linkage. We also discuss a potential transcriptional cascade that controls the processes necessary to produce dormant Entamoeba cysts.


Subject(s)
Amebiasis , Cysts , Entamoeba histolytica , Entamoeba , Humans , Entamoeba/metabolism
4.
Nat Commun ; 14(1): 7028, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919280

ABSTRACT

The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Animals , CD8-Positive T-Lymphocytes , Antigens, Protozoan , Leishmaniasis, Cutaneous/prevention & control , Skin Tests
5.
BMC Res Notes ; 16(1): 266, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817269

ABSTRACT

OBJECTIVE: Galectins are sugar-binding proteins that participate in many biological processes, such as immunity, by regulating host immune cells and their direct interaction with pathogens. They are involved in mediating infection by Schistosoma mansoni, a parasitic trematode that causes schistosomiasis. However, their direct effects on schistosomes have not been investigated. RESULTS: We found that galectin-2 recognizes S. mansoni glycoconjugates and investigated whether galectin-1, 2, and 3 can directly affect S. mansoni in vitro. Adult S. mansoni were treated with recombinant galectin-1, 2, and 3 proteins or praziquantel, a positive control. Treatment with galectin-1, 2, and 3 had no significant effect on S. mansoni motility, and no other differences were observed under a stereoscopic microscope. Hence, galectin-1, 2, and 3 may have a little direct effect on S. mansoni. However, they might play a role in the infection in vivo via the modulation of the host immune response or secretory molecules from S. mansoni. To the best of our knowledge, this is the first study to investigate the direct effect of galectins on S. mansoni and helps in understanding the roles of galectins in S. mansoni infection in vivo.


Subject(s)
Galectins , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Galectin 1/pharmacology , Galectins/pharmacology , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/physiology , Schistosomiasis mansoni/drug therapy
6.
iScience ; 26(9): 107594, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744404

ABSTRACT

Leishmaniasis is a tropical disease prevalent in 90 countries. Presently, there is no approved vaccine for human use. We developed a live attenuated L. mexicana Cen-/-(LmexCen-/-) strain as a vaccine candidate that showed excellent efficacy, characterized by reduced Th2 and enhanced Th1 responses in C57BL/6 and BALB/c mice, respectively, compared to wild-type L. mexicana (LmexWT) infection. Toward understanding the immune mechanisms of protection, we applied untargeted mass spectrometric analysis to LmexCen-/- and LmexWT infections. Data showed enrichment of the pentose phosphate pathway (PPP) in ears immunized with LmexCen-/-versus naive and LmexWT infection. PPP promotes M1 polarization in macrophages, suggesting a switch to a pro-inflammatory phenotype following LmexCen-/- inoculation. Accordingly, PPP inhibition in macrophages infected with LmexCen-/- reduced the production of nitric oxide and interleukin (IL)-1ß, hallmarks of classical activation. Overall, our study revealed the immune regulatory mechanisms that may be critical for the induction of protective immunity.

7.
iScience ; 26(9): 107593, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744403

ABSTRACT

Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.

8.
Trop Med Health ; 51(1): 12, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36859380

ABSTRACT

BACKGROUND: Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS: As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS: As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS: For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.

9.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463228

ABSTRACT

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

10.
Microbiol Spectr ; 10(5): e0112622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190414

ABSTRACT

Infection of C57BL/6 wild-type mice with Leishmania major 5-ASKH or Friedlin strains results in relatively similar pathogenicity with self-healing lesions within weeks. Parasite clearance depends on nitric oxide production by activated macrophages in response to cytokines produced mainly by CD4+ Th1 cells. In contrast, C57BL/6 Rag2 knockout mice, which lack T and B lymphocytes, show distinct pathologies during infection with these strains. Despite of the similar parasite number, the 5-ASKH infection induced severe inflammation rather than the Friedlin. To determine the immunological factors behind this phenomenon, we infected C57BL/6 Rag2 knockout mice with these two strains and compared immune cell kinetics and macrophage activation status. Compared with the Friedlin strain, the 5-ASKH strain elicited increased pathology associated with the accumulation of CD11bhigh, Ly6Ghigh neutrophils by week four and increased the expression of macrophage activation markers. We then analyzed the differentially expressed transcripts in infected bone marrow-derived macrophages by RNA sequencing. It showed upregulation of multiple inflammatory transcripts, including Toll-like receptor 1/2 (TLR1/2), CD69, and CARD14, upon 5-ASKH infection. Our findings suggest that different L. major strains can trigger distinct macrophage activation, contributing to the disease outcome observed in the absence of lymphocytes but not in the presence of lymphocytes. IMPORTANCE Disease manifestations of cutaneous leishmaniasis (CL) range from self-healing cutaneous lesions to chronic forms of the disease, depending on the infecting Leishmania sp. and host immune protection. Previous works on mouse models of CL show the distinct pathogenicity of Leishmania major strains in the absence of lymphocytes. However, the mechanisms of this pathology remain uncovered. In the trial to understand the immunological process involved in lymphocyte-independent pathology, we have found a specific induction of macrophages by different L. major strains that affect their ability to mount innate responses leading to neutrophilic pathology when lymphocytes are ablated.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Mice , Animals , Toll-Like Receptor 1 , Macrophage Activation , Virulence , Nitric Oxide , Mice, Inbred BALB C , Mice, Inbred C57BL , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Mice, Knockout , Cytokines , Th1 Cells
11.
Acta Trop ; 235: 106636, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944582

ABSTRACT

Schistosomiasis is one of the most prevalent waterborne parasitic diseases affecting humans. In natural conditions, snails are necessary for maintenance of its lifecycle and also required as intermediate hosts to maintain the lifecycle in laboratory settings. In the present study, the location of S. mansoni larvae in Biomphalaria glabrata snails after infection (inoculation of miracidia) was investigated. Larvae were found located in the head-foot (HF) area of B. glabrata snails at 10 days post-infection (DPI), then their location was predominantly changed to the hepatopancreas and ovotestis (HPOT) area by 56 DPI. Next, the effects of extracts from various organs of B. glabrata snails including HF and HPOT for in vitro culturing of S. mansoni larvae were investigated. The HF extract enabled prolonged culturing of S. mansoni larvae. Furthermore, sequential use of that followed by the HPOT extract supported larval development or reproduction of daughter sporocysts. These results may provide important information for identifying essential factors and molecules for culturing Schistosoma larvae in vitro.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Animals , Biomphalaria/parasitology , Host-Parasite Interactions , Humans , Larva , Life Cycle Stages , Reproduction , Schistosoma mansoni
12.
Pathogens ; 11(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35631079

ABSTRACT

The dengue virus (DENV) has been endemic in Myanmar since 1970, causing outbreaks every 2-3 years. DENV infection symptoms range from mild fever to lethal hemorrhage. Clinical biomarkers must be identified to facilitate patient risk stratification in the early stages of infection. We analyzed 45 cytokines and other factors in serum samples from the acute phase of DENV infection (within 3-5 days of symptom onset) from 167 patients in Yangon, Myanmar, between 2017 and 2019. All of the patients tested positive for serum DENV nonstructural protein 1 antigen (NS1 Ag); 78.4% and 62.9% were positive for immunoglobulin M (IgM) and G (IgG), respectively; and 18.0%, 19.8%, and 11.9% tested positive for serotypes 1, 3, and 4, respectively. Although the DENV-4 viral load was significantly higher than those of DENV-1 or DENV-3, disease severity was not associated with viral load or serotype. Significant correlations were identified between disease severity and CCL5, SCF, PDGF-BB, IL-10, and TNF-α levels; between NS1 Ag and SCF, CCL5, IFN-α, IL-1α, and IL-22 levels; between thrombocytopenia and IL-2, TNF-α, VEGF-D, and IL-6 levels; and between primary or secondary infection and IL-2, IL-6, IL-31, IL-12p70, and MIP-1ß levels. These circulating factors may represent leading signatures in acute DENV infections, reflecting the clinical outcomes in the dengue endemic region, Myanmar.

13.
Front Immunol ; 13: 864031, 2022.
Article in English | MEDLINE | ID: mdl-35419001

ABSTRACT

Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen-/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.


Subject(s)
Leishmania major , Leishmaniasis Vaccines , Parasites , Animals , Immunity , Interferon-gamma , Leishmaniasis Vaccines/genetics , Memory T Cells , Mice , Skin , Trimethoprim, Sulfamethoxazole Drug Combination
14.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236861

ABSTRACT

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

16.
Microbiol Spectr ; 9(1): e0051121, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34346756

ABSTRACT

Entamoeba histolytica, a protozoan parasite, causes amoebiasis in humans. Amoebiasis transmission is solely mediated by chitin-walled cysts, which are produced in the large intestine of humans from proliferative trophozoites by a cell differentiation process called encystation. Resistance to environmental stresses, an essential characteristic for transmission, is attributed to the cyst wall, which is constructed from chitin and several protein components, including chitinase. Chitinase may play a key role in cyst wall formation; however, this has not been confirmed. Here, to elucidate the physiological role of chitinase during Entamoeba encystation, we identified a new chitinase inhibitor, 2,6-dichloro-4-[2-(1-piperazinyl)-4-pyridinyl]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzenesulfonamide, by recombinant-Entamoeba chitinase-based screening of 400 Pathogen Box chemicals. This compound dose dependently inhibited native chitinase associated with Entamoeba invadens encystation, a model for E. histolytica encystation, with an 50% inhibitory concentration (IC50) of ∼0.6 µM, which is comparable to the IC50s (0.2 to 2.5 µM) for recombinant E. histolytica and E. invadens chitinases. Furthermore, the addition of this compound to E. invadens encystation-inducing cultures increased the generation of cyst walls with an abnormal shape, the most characteristic of which was a "pot-like structure." A similar structure also appeared in standard culture, but at a far lower frequency. These results indicate that chitinase inhibition increases the number of abnormal encysting cells, thereby significantly reducing the efficiency of cyst formation. Transmission electron microscopy showed that compound-treated encysting cells formed an abnormally loose cyst wall and an unusual gap between the cyst wall and cell membrane. Hence, Entamoeba chitinase is required for the formation of mature round cysts. IMPORTANCE Amoebiasis is caused by Entamoeba histolytica infection and is transmitted by dormant Entamoeba cells or cysts. Cysts need to be tolerant to severe environmental stresses faced outside and inside a human host. To confer this resistance, Entamoeba parasites synthesize a wall structure around the cell during cyst formation. This cyst wall consists of chitin and several protein components, including chitinase. The physiological roles of these components are not fully understood. Here, to elucidate the role of chitinase during cyst formation, we identified a new chitinase inhibitor by screening a library of 400 compounds. Using this inhibitor, we showed that chitinase inhibition causes the formation of abnormal cyst walls, the most characteristic of which is a "pot-like structure." This results in decreased production of mature cysts. Chitinase is therefore required for Entamoeba to produce mature cysts for transmission to a new host.


Subject(s)
Chitinases/metabolism , Entamoeba/enzymology , Entamoebiasis/parasitology , Protozoan Proteins/metabolism , Chitinases/genetics , Cysts/parasitology , Entamoeba/genetics , Entamoeba/growth & development , Entamoeba/ultrastructure , Humans , Microscopy, Electron, Transmission , Protozoan Proteins/genetics
17.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360597

ABSTRACT

Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 µM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.


Subject(s)
Coumarins/metabolism , Malates/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Ubiquinone/metabolism , Animals , Humans , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Protozoan Proteins/genetics , Substrate Specificity
18.
Antimicrob Agents Chemother ; 65(10): e0041821, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339272

ABSTRACT

The emergence of parasites resistant to praziquantel, the only therapeutic agent, and its ineffectiveness as a prophylactic agent (inactive against the migratory/juvenile Schistosoma mansoni), make the development of new antischistosomal drugs urgent. The parasite's mitochondrion is an attractive target for drug development, because this organelle is essential for survival throughout the parasite's life cycle. We investigated the effects of 116 compounds against Schistosoma mansoni cercaria motility that have been reported to affect mitochondrion-related processes in other organisms. Next, eight compounds plus two controls (mefloquine and praziquantel) were selected and assayed against the motility of schistosomula (in vitro) and adults (ex vivo). Prophylactic and therapeutic assays were performed using infected mouse models. Inhibition of oxygen consumption rate (OCR) was assayed using Seahorse XFe24 analyzer. All selected compounds showed excellent prophylactic activity, reducing the worm burden in the lungs to less than 15% of that obtained in the vehicle control. Notably, ascofuranone showed the highest activity, with a 98% reduction of the worm burden, suggesting the potential for the development of ascofuranone as a prophylactic agent. The worm burden of infected mice with S. mansoni at the adult stage was reduced by more than 50% in mice treated with mefloquine, nitazoxanide, amiodarone, ascofuranone, pyrvinium pamoate, or plumbagin. Moreover, adult mitochondrial OCR was severely inhibited by ascofuranone, atovaquone, and nitazoxanide, while pyrvinium pamoate inhibited both mitochondrial and nonmitochondrial OCRs. These results demonstrate that the mitochondria of S. mansoni are a feasible target for drug development.


Subject(s)
Pharmaceutical Preparations , Schistosomiasis mansoni , Schistosomicides , Animals , Mice , Mitochondria , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/prevention & control , Schistosomicides/therapeutic use
19.
Commun Biol ; 4(1): 929, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330999

ABSTRACT

Visceral Leishmaniasis (VL), a potentially fatal disease is caused by Leishmania donovani parasites with no vaccine available. Here we produced a dermotropic live attenuated centrin gene deleted Leishmania major (LmCen-/-) vaccine under Good Laboratory Practices and demonstrated that a single intradermal injection confers robust and durable protection against lethal VL transmitted naturally via bites of L. donovani-infected sand flies and prevents mortality. Surprisingly, immunogenicity characteristics of LmCen-/- parasites revealed activation of common immune pathways like L. major wild type parasites. Spleen cells from LmCen-/- immunized and L. donovani challenged hamsters produced significantly higher Th1-associated cytokines including IFN-γ, TNF-α, and reduced expression of the anti-inflammatory cytokines like IL-10, IL-21, compared to non-immunized challenged animals. PBMCs, isolated from healthy people from non-endemic region, upon LmCen-/- infection also induced more IFN-γ compared to IL-10, consistent with our immunogenicity data in LmCen-/- immunized hamsters. This study demonstrates that the LmCen-/- parasites are safe and efficacious against VL and is a strong candidate vaccine to be tested in a human clinical trial.


Subject(s)
Gene Deletion , Genes, Protozoan , Leishmania donovani/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/prevention & control , Leishmania donovani/genetics , Leishmaniasis, Visceral/immunology , Protozoan Proteins , Vaccines, Attenuated/immunology
20.
Int J Mol Sci ; 22(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34281290

ABSTRACT

Plasmodium falciparum's resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Imines/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/toxicity , Cell Line , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/toxicity , Humans , Imines/chemistry , Imines/toxicity , Plasmodium falciparum/growth & development , Pyrimidines/chemistry , Pyrimidines/toxicity , Recombinant Proteins/drug effects , Structure-Activity Relationship , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...