Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(22): 12753-12767, 2023.
Article in English | MEDLINE | ID: mdl-36688370

ABSTRACT

EGFR is one of the important mediators of the signaling cascade that determines key roles in various biological processes such as growth, differentiation, metabolism and apoptosis in the cell in response to external and internal stimuli. In recent years, it has been proven that although this enzyme activity is tightly regulated in normal cells, if the enzyme activity cannot be controlled, it can lead to malignancy. EGFR is also considered a prominent macromolecule in targeted cancer chemotherapy. For this purpose, a comprehensive modeling studies were conducted against EGFR protein and novel molecules containing 5-[(1H-1,2,4-triazol-1-yl)methyl]-3H-1,2,4-triazole-3-thione structure were suggested to be synthesized. Among the synthesized molecules, compounds 7c, 8c, 8f and 8g were determined to have significant IC50 values. Compound 8g was found to have the IC50 value closest to the very well-known EGFR inhibitor Gefitinib with its noncompetitive inhibition form. Ki value of compound 8g was calculated as 0.00232 µM.Communicated by Ramaswamy H. Sarma.


Subject(s)
Heterocyclic Compounds , Thiones , Triazoles/pharmacology , Triazoles/chemistry , ErbB Receptors , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation
2.
Drug Dev Ind Pharm ; 47(8): 1248-1260, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34606388

ABSTRACT

The main objective of this study was to prepare cisplatin (CDDP) bound triblock polymeric micelle solution which will have a hydrophilic shell not being phagocytosed by mononuclear phagocyte system, and evaluate in vitro behavior for the treatment of ovarian cancer. For this aim, CDDP was bound to polyglutamic acid (PGA) and the triblock polymer was prepared using polyethylene glycol)-polylactide-co-glycolide (PEG-PLGA). CDDP-bound triblock copolymer conjugation was characterized, in vitro release and permeability studies were performed using USP II method and Caco-2 cell lines, respectively. The release of CDDP from CDDP-bound triblock polymeric micelle solution was found 87.3 ± 3.56% at the end of the 24th hour. CDDP bound triblock polymeric micelle solution was detected as biocompatible, and permeable according to in vitro studies. According to the MTT results, the measured cytotoxicity was found to be maximum in CDDP-bound triblock polymeric micelle solution when compared with CDDP solution and conjugate in SKOV-3 and OVCAR-3 cells, whereas annexin V-FITC apoptosis results were found to be maximum in A2780 cells.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cisplatin/pharmacology , Female , Humans , Micelles , Ovarian Neoplasms/drug therapy , Polyethylene Glycols , Polymers
3.
Colloids Surf B Biointerfaces ; 206: 111946, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34216850

ABSTRACT

The aim of this study was the preparation of solid lipid nanoparticles (SLN) formed from cetyl palmitate with having targeting molecules for monocarboxylate transporter-1 (MCT-1): ß-hydroxybutyric acid and anticancer agents: carmustine (BCNU) and temozolomide (TMZ) for enhanced anti-proliferation against glioblastoma multiforme (GBM). Properties including size, morphology, chemical structure, zeta potential, drug encapsulation efficacy, drug release, biocompatibility, stability were determined, and in vitro studies were done. BCNU and TMZ loaded SLNs had a hydrodynamic size of 227 nm ± 46 a zeta potential of -25 mV ± 4 with biocompatible features. The data showed rapid drug release at first and then continuous release. Nanoparticles could be stored for nine months. BCNU and TMZ loaded SLNs exhibited a remarkable increment in the antitumor activity compared to the free-drugs and induced apoptosis on U87MG cells. In addition, targeted nanoparticles were more uptaken by MCT-1 expressing brain cells. This study indicated that BCNU and TMZ loaded SLNs could act as a useful anticancer system for targeted GBM therapy.


Subject(s)
Glioblastoma , Nanoparticles , Pharmaceutical Preparations , Brain , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Lipids
4.
Int J Pharm ; 592: 119999, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33190790

ABSTRACT

The infection of bone and bone marrow is called osteomyelitis. Treatment is difficult since antibiotics can not reach with enough concentration to the infected area. For the first time in this study, we have developed gentamicin-loaded magnetic gelatin nanoparticles (GMGNPs) for nanocarrier-mediated and magnetically targeted osteomyelitis therapy. Gelatin, genipin, and magnetite were used for preparation of that novel carrier system due to their biodegradable and biocompatible properties. Cross-linking degree of gelatin nanoparticles, concentration of magnetite nanoparticles, and adsorbed drug amount were optimized. Furthermore, nanoparticles were characterized and the drug release profile was determined. The osteomyelitis model was constituted in the proximal tibia of rats. The therapeutic potential of GMGNPs on rats was monitored via X-Ray radiography and hematological and histopathological analyses were performed. According to the results, 110.3 ± 8.2 µg gentamicin/mg GMGNPs were used, hydrodynamic size was measured as 253.7 ± 11.8 nm, and GMGNPs have controlled drug release profile. Based on in vivo and ex vivo studies, after six doses of GMGNPs treatment, abscess began to heal and the integrity of periost and bone began to reconstruct. In conclusion, it can be suggested that GMGNPs could provide efficient therapy for osteomyelitis.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Osteomyelitis , Animals , Anti-Bacterial Agents/therapeutic use , Drug Carriers/therapeutic use , Gelatin , Gentamicins , Osteomyelitis/drug therapy , Rats
5.
J Pharm Sci ; 108(3): 1272-1283, 2019 03.
Article in English | MEDLINE | ID: mdl-30773203

ABSTRACT

Non-small cell lung cancer (NSCLC) constitutes more than 85% of lung cancer case. Pemetrexed is used to treat types of NSCLC, and pazopanib is used for some types of soft tissue sarcoma. The aim of the study was development of pemetrexed and pazopanib carrying nanobubble system with magnetic responsiveness and ultrasound sensitivity properties for targeted NSCLC therapy. Drugs were linked to newly designed peptide, and peptide drug conjugates were attached to amine-modified magnetite. Resulting nanoparticles were encapsulated into liposomes, and liposomes were extruded, then nanobubble system was prepared. Moreover, nanobubble biodistribution was monitored by in vivo imaging system. As a result, based on high-performance liquid chromatography data, magnetite and peptide-pemetrexed were conjugated with 54.02% yield, and magnetite and peptide-pazopanib were bound with 63.53% yield. Hydrodynamic size of nanobubbles, prepared from liposomes filtered through 800 nm and 400 nm, was determined as 491.1 ± 130.2 and 275.8 ± 117.8 nm, respectively. Carrier system was accumulated into tumor area with 80.22% yield of the injected carrier system. It was found that nanobubbles were magnetic responsive for accumulation via magnetic field and could be disrupted by ultrasound via focused acoustic pressure, which lead to targeted drug delivery. These nanobubble systems could be investigated for intravenous and inhaler administration in further studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Delivery Systems/methods , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , A549 Cells , Administration, Inhalation , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Chromatography, High Pressure Liquid , Drug Compounding/methods , Ferrosoferric Oxide/chemistry , Humans , Indazoles , Injections, Intralesional , Liposomes , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Magnetic Phenomena , Mice , Nebulizers and Vaporizers , Pemetrexed/administration & dosage , Pyrimidines/administration & dosage , Sulfonamides/administration & dosage , Tissue Distribution/radiation effects , Tumor Burden/drug effects , Ultrasonic Waves , Xenograft Model Antitumor Assays
6.
Artif Cells Nanomed Biotechnol ; 46(sup1): 926-937, 2018.
Article in English | MEDLINE | ID: mdl-29458269

ABSTRACT

Doxorubicin is widely used anticancer drug; however, use of doxorubicin is limited. Under externally applied magnetic field, magnetic agents can help to transport drug directly to tumor. Folate receptor is overexpressed in ovarian carcinomas. In this study, we aimed to develop magnetically responsive and folate receptor-targeted biomimetic drug delivery system for ovarian cancer therapy. Doxorubicin-loaded and glucose/gluconic acid-coated magnetic nanoparticles were synthesized and erythrocyte membrane vesicles were used for coating of nanoparticles. Folate ligand was anchored to surface so as to target receptor. Hydrodynamic size of nanocarrier was found as 91.2 ± 20.8 nm. The results showed that delivery system has controlled drug release profile and biocompatible features. In folate-free medium, folate receptor-targeted nanocarrier showed 10.33-fold lower IC50 values for A2780 cells and 3.93-fold lower for OVCAR3 cells compared to non-targeted nanoparticles and demonstrated more cytotoxicity against ovarian cancer cells. Moreover, magnetically and folate receptor-targeted doxorubicin delivery system was significantly more effective for therapy of xenografted nude mice than free doxorubicin based on tumor shrinkages and biochemical parameters. In conclusion, it can be suggested that folate ligand-attached and biomimetically designed magnetic drug delivery system have advantages and potential for targeted ovarian cancer therapy.


Subject(s)
Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Folic Acid Transporters/metabolism , Magnets/chemistry , Ovarian Neoplasms/drug therapy , Animals , Biological Transport , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/therapeutic use , Drug Carriers/pharmacokinetics , Drug Carriers/toxicity , Drug Liberation , Female , Gold/chemistry , Hemolysis/drug effects , Humans , Macrophages/metabolism , Metal Nanoparticles/chemistry , Mice , Molecular Targeted Therapy , Ovarian Neoplasms/pathology , Tissue Distribution
7.
Artif Cells Nanomed Biotechnol ; 44(3): 943-9, 2016 May.
Article in English | MEDLINE | ID: mdl-25615875

ABSTRACT

Magnetic iron oxide nanoparticles (IONPs) were coated with gelatin type B by means of the two-step desolvation method. Drug loading by adsorption was studied under various conditions such as different temperature, contact time, pH, and initial gemcitabine concentration. Further, Langmuir isotherm curves were constracted and constants were calculated. According to the Langmuir isotherm, the Gibbs free energy of the adsorption process at 25°C was - 4.74 kJ/mol. On the other hand, this value at 37°C was - 7.86 kJ/mol. In vitro drug release was performed at pH levels of 5 and 7.4, with gemcitabine-loaded magnetic gelatin nanoparticles and free gemcitabine, and both the results were subsequently compared.


Subject(s)
Deoxycytidine/analogs & derivatives , Drug Delivery Systems/methods , Gelatin/chemistry , Lung Neoplasms/drug therapy , Magnetite Nanoparticles/chemistry , Animals , Deoxycytidine/chemistry , Deoxycytidine/pharmacokinetics , Deoxycytidine/pharmacology , Humans , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...