Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Biotechnol (NY) ; 23(2): 177-188, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33599909

ABSTRACT

The novel non-targeted PCR-based genotyping system, namely Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di), is characterized by the simplicity in library construction and robustness against DNA degradation and is expected to facilitate advancements in genetics, in both basic and applied sciences. In this study, we tested the utility of GRAS-Di for genetic analysis in a cultured population of the tiger pufferfish Takifugu rubripes. The genetic analyses included family structure analysis, genetic map construction, and quantitative trait locus (QTL) analysis for the male precocious phenotype using a population consisting of four full-sib families derived from a genetically precocious line. An average of 4.7 million raw reads were obtained from 198 fish. Trimmed reads were mapped onto a Fugu reference genome for genotyping, and 21,938 putative single-nucleotide polymorphisms (SNPs) were obtained. These 22 K SNPs accurately resolved the sibship and parent-offspring pairs. A fine-scale linkage map (total size: 1,949 cM; average interval: 1.75 cM) was constructed from 1,423 effective SNPs, for which the allele inheritance patterns were known. QTL analysis detected a significant locus for testes weight on Chr_14 and three suggestive loci on Chr_1, Chr_8, and Chr_19. The significant QTL was shared by body length and body weight. The effect of each QTL was small (phenotypic variation explained, PVE: 3.1-5.9%), suggesting that the precociousness seen in the cultured pufferfish is polygenic. Taken together, these results indicate that GRAS-Di is a practical genotyping tool for aquaculture species and applicable for molecular breeding programs, such as marker-assisted selection and genomic selection.


Subject(s)
Organ Size/genetics , Polymerase Chain Reaction/methods , Takifugu/genetics , Animals , Aquaculture , Female , Genetics, Population , Genotyping Techniques/methods , Male , Quantitative Trait Loci , Sequence Analysis, DNA , Takifugu/growth & development , Testis/anatomy & histology
2.
Mar Biotechnol (NY) ; 19(6): 579-591, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28942506

ABSTRACT

The tiger puffer Takifugu rubripes is one of the most popular aquacultural fish; however, there are two major obstacles to selective breeding. First, they have a long generation time of 2 or 3 years until maturation. Second, the parental tiger puffer has a body size (2-5 kg) much larger than average market size (0.6-1.0 kg). The grass puffer Takifugu niphobles is closely related to the tiger puffer and matures in half the time. Furthermore, grass puffer can be reared in small areas since their maturation weight is about 1/150 that of mature tiger puffer. Therefore, to overcome the obstacles of maturation size and generation time of tiger puffer, we generated surrogate grass puffer that can produce tiger puffer gametes through germ cell transplantation. Approximately 5000 tiger puffer testicular cells were transplanted into the peritoneal cavity of triploid grass puffer larvae at 1 day post hatching. When the recipient fish matured, both males and females produced donor-derived gametes. Through their insemination, we successfully produced donor-derived tiger puffer offspring presenting the same body surface dot pattern, number of dorsal fin rays, and DNA fingerprint as those of the donor tiger puffer, suggesting that the recipient grass puffer produced functional eggs and sperm derived from the donor tiger puffer. Although fine tunings are still needed to improve efficiencies, surrogate grass puffer are expected to accelerate the breeding process of tiger puffer because of their short generation time and small body size.


Subject(s)
Germ Cells/transplantation , Takifugu/growth & development , Animals , Aquaculture/methods , Germ Cells/cytology , Larva/growth & development , Male , Selective Breeding , Testis/cytology , Triploidy
3.
Mar Biotechnol (NY) ; 15(2): 133-44, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22842782

ABSTRACT

Tiger puffer Takifugu rubripes is one of the most valuable fish species in Japan; however, there has not been much progress in their selective breeding until recently despite their potential in aquaculture. Their long generation time and the large body size of their broodstock make breeding difficult. Recently, we made a surrogate broodstock, which produced gametes of different species in salmonids. Therefore, by using closely related recipients, which have small body sizes and short generation times, it is possible to accelerate breeding of the tiger puffer. Thus, we considered the grass puffer Takifugu niphobles, which has a short generation time and a small maturation size, as a potential recipient for gamete production of the tiger puffer. Furthermore, if sterile triploid individuals are used as recipients, the resulting surrogate broodstock would produce only donor-derived gametes. Therefore, we examined conditions for inducing triploidy by suppressing meiosis II to retain the second polar body in grass puffer. We found that cold shock treatment, which is 5°C for 30 min starting from 5 min after fertilization, is optimal to obtain high triploidization and hatching rates. Although the resulting triploid grass puffers produced small amounts of gametes in both sexes, the offspring derived from the gametes could not live for over 3 days. Furthermore, we found that triploid grass puffer showed normal plasma sex steroid levels compared with diploids. These are important characteristics of triploid grass puffer as surrogate recipients used for germ cell transplantation.


Subject(s)
Breeding/methods , Cold-Shock Response/physiology , Fertility/physiology , Germ Cells/transplantation , Gonads/growth & development , Takifugu/physiology , Triploidy , Analysis of Variance , Animals , Gonads/anatomy & histology , Histological Techniques , Japan , Steroids/blood , Takifugu/genetics
4.
Toxicon ; 58(6-7): 565-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21920378

ABSTRACT

Tetrodotoxin (TTX) was intramuscularly administered to artificially hybridized specimens of the pufferfish Takifugu rubripes and Takifugu niphobles to investigate toxin accumulation in hybrids, and TTX transfer/accumulation profiles in the pufferfish body. In the test fish administered 146 MU TTX in physiologic saline, TTX rapidly transferred from the muscle via the blood to other organs. Toxin transfer to the ovary rapidly increased to 53.5 MU/g tissue at the end of the 72-h test period. The TTX content in the liver and skin was, at most, around 4-6 MU/g tissue, and in the testis it was less than 0.01 MU/g tissue. On the other hand, based on the total amount of toxin per individual (% of the administered toxin), the skin and the liver contained higher amounts (20-54% and 2-24%, respectively), but the amount in the liver rapidly decreased after 8-12 h, and fell below the level in the ovary after 48 h. These findings suggest that part of the TTX is first taken up in the liver and then transferred/accumulated in the skin in male specimens and in the ovary in female specimens.


Subject(s)
Takifugu/metabolism , Tetraodontiformes/metabolism , Tetrodotoxin/pharmacokinetics , Animals , Biological Transport , Female , Injections, Intramuscular , Liver/metabolism , Male , Ovary/metabolism , Skin/metabolism , Tetrodotoxin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...