Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 82: 53-60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26047007

ABSTRACT

The purpose of this study was to analyze real crashes involving pedestrians in order to evaluate the potential effectiveness of autonomous emergency braking systems (AEB) in pedestrian protection. A sample of 100 real accident cases were reconstructed providing a comprehensive set of data describing the interaction between the vehicle, the environment and the pedestrian all along the scenario of the accident. A generic AEB system based on a camera sensor for pedestrian detection was modeled in order to identify the functionality of its different attributes in the timeline of each crash scenario. These attributes were assessed to determine their impact on pedestrian safety. The influence of the detection and the activation of the AEB system were explored by varying the field of view (FOV) of the sensor and the level of deceleration. A FOV of 35° was estimated to be required to detect and react to the majority of crash scenarios. For the reaction of a system (from hazard detection to triggering the brakes), between 0.5 and 1s appears necessary.


Subject(s)
Accidents, Traffic/prevention & control , Automobiles , Deceleration , Pattern Recognition, Automated , Pedestrians , Protective Devices , Safety Management/methods , Safety Management/organization & administration , Biomechanical Phenomena , Emergencies , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...